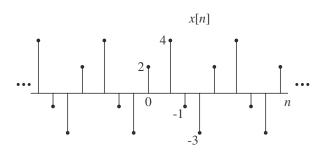
ENEE 222: 5/07 Class

Material: Lecture videos 22.3, 23.1, 23.2

1. The sequence $x[\cdot]$ shown below is periodic with period L=4 samples.



If $x[\cdot]$ is the input to a FIR filter with input-output relationship

$$y[n] \ = \ x[n] \ - \ 3x[n-1] \ + \ 4x[n-2] \ - \ 3x[n-3] \ + \ x[n-4] \ ,$$

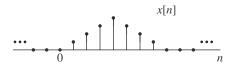
then the output sample at time n=26 equals

- A. -3
- B. -7 C. 3

2. The FIR filter described by

$$y[n] = b_0x[n] + b_1x[n-1] + b_2x[n-2] + b_3x[n-3] + b_4x[n-4] + b_5x[n-5]$$

(where b_0 and b_5 are both nonzero) accepts the finite-duration input $x[\cdot]$ depicted below.



If n_1 and n_2 are, respectively, the time indices of the first and last nontrivial (nonzero) samples in the output sequence, then (n_1, n_2) equals

- A. (0, 12)
- B. (0, 13)
- C. (1,12) D. (1,13)

3. The convolution table shown below computes the response of a FIR filter to an input sequence of finite duration.

		-1	4	0	-4	1			
3	5	1							y_0
	3	5	1						y_1
		3	5	1					y_2
			3	5	1				y_3
				3	5	1			y_4
					3	5	1		y_5
						3	5	1	y_6

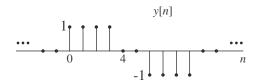
The output value y_3 equals

- A. 8
- B. -2
- C. 4
- D. -3

4. When the input

$$x[0:4] = \begin{bmatrix} 1 & 0 & 0 & 0 & -1 \end{bmatrix}^T;$$
 $x[n] = 0$ for all other n

is applied to a FIR filter, the output $y[\cdot]$ is as shown below.



Which of the following is the filter coefficient vector **b**?

- A. $[1 \ 1 \ 1 \ 1 \ 1 \ 1]^T$
- B. $[1 \ 1 \ 1 \ 1]^T$
- C. $[1 \ 1 \ 1 \ 1 \ 1]^T$
- D. $[1 \ 1 \ 1 \ 1 \ -1 \ -1]^T$

5. (**HW 27** \subset **ii v**) Consider the FIR filter with coefficient vector $\mathbf{b} = \begin{bmatrix} 1 & 3 & 0 & -3 & -1 \end{bmatrix}^T$.

Interpret the following two computations as operations performed by this filter on suitable input sequences.

% Computation #1:

$$x1 = [1 \ 2 \ 4 \ -1 \ -2 \ -4].$$
;

$$y1 = ifft(Y1)$$

% Computation #2:

$$b = [1 \ 3 \ 0 \ -3 \ -1].$$
;

$$H = fft(b,6) ;$$

$$H = H(1:2:6)$$
;

$$x2 = [2 -1 5].$$
; $X2 = fft(x2)$;

$$Y2 = H.*X2$$
;

$$y2 = ifft(Y2)$$