ENEE 222: 5/07 Class

Material: Lecture videos 22.3, 23.1, 23.2

1. The sequence $x[\cdot]$ shown below is periodic with period $L=4$ samples.

If $x[\cdot]$ is the input to a FIR filter with input-output relationship

$$
y[n]=x[n]-3 x[n-1]+4 x[n-2]-3 x[n-3]+x[n-4],
$$

then the output sample at time $n=26$ equals
A. -3
B. -7
C. 3
D. 7
2. The FIR filter described by

$$
y[n]=b_{0} x[n]+b_{1} x[n-1]+b_{2} x[n-2]+b_{3} x[n-3]+b_{4} x[n-4]+b_{5} x[n-5]
$$

(where b_{0} and b_{5} are both nonzero) accepts the finite-duration input $x[\cdot]$ depicted below.

If n_{1} and n_{2} are, respectively, the time indices of the first and last nontrivial (nonzero) samples in the output sequence, then (n_{1}, n_{2}) equals
A. $(0,12)$
B. $(0,13)$
C. $(1,12)$
D. $(1,13)$
3. The convolution table shown below computes the response of a FIR filter to an input sequence of finite duration.

			-1	4	0	-4	1		
	3	5							y_{0}
	3	5	1						y_{1}
		3	5	1					y_{2}
			3	5	1				y_{3}
				3	5	1			y_{4}
					3	5	1		y_{5}
						3	5	1	y_{6}

The output value y_{3} equals
A. 8
B. -2
C. 4
D. -3
4. When the input

$$
x[0: 4]=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & -1
\end{array}\right]^{T} ; \quad x[n]=0 \text { for all other } n
$$

is applied to a FIR filter, the output $y[\cdot]$ is as shown below.

Which of the following is the filter coefficient vector \mathbf{b} ?
A. $\quad\left[\begin{array}{llllll}1 & 1 & 1 & 1 & 1 & 1\end{array}\right]^{T}$
B. $\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]^{T}$
C. $\quad\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}\right]^{T}$
D. $\quad\left[\begin{array}{llllll}1 & 1 & 1 & 1 & -1 & -1\end{array}\right]^{T}$
5. (HW $27 \subset \mathbf{i i} \mathbf{v}$) Consider the FIR filter with coefficient vector $\mathbf{b}=\left[\begin{array}{lllll}1 & 3 & 0 & -3 & -1\end{array}\right]^{T}$. Interpret the following two computations as operations performed by this filter on suitable input sequences.
\% Computation \#1:
b = [1 3 3 0 -3 -1].' ;
$\mathrm{H}=\mathrm{fft}(\mathrm{b}, 6)$;
$\mathrm{x} 1=\left[\begin{array}{lllll}1 & 2 & 4 & -1 & -2 \\ -4\end{array}\right]$. ;
$\mathrm{X} 1=\mathrm{fft}(\mathrm{x} 1)$;
Y1 = H.*X1 ;
$\mathrm{y} 1=\operatorname{ifft}(\mathrm{Y} 1)$
\% Computation \#2:
b = [1 3 3 0 -3 -1].' ;
$\mathrm{H}=\mathrm{fft}(\mathrm{b}, 6)$;
$\mathrm{H}=\mathrm{H}(1: 2: 6)$;
x2 = [2-1 5].' ;
$\mathrm{X} 2=\mathrm{fft}(\mathrm{x} 2)$;
Y2 = H.*X2 ;
$\mathrm{y} 2=\operatorname{ifft}(\mathrm{Y} 2)$

