## ENEE 222: 4/30 Class

Material: Lecture videos 20.1, 20.2

1. Consider a filter with input-output relationship

$$
y[n]=x[n]-3 x[n-1]+4 x[n-2]-3 x[n-3]+x[n-4]
$$

If the input sequence is given by

$$
x[n]=2^{-n}, \quad n \in \mathbf{Z}
$$

which of the following equations describes the output for all $n$ ?
A. $y[n]=3 \cdot 2^{-n}$
B. $y[n]=3 \cdot 2^{-n+4}$
C. $y[n]=3 \cdot 2^{-n-4}$
D. $y[n]=0$
2. The (complex) frequency response of the filter in item $\mathbf{1}$ above is given by
A. $H\left(e^{j \omega}\right)=e^{j 2 \omega}(4-3 \cos \omega+\cos 2 \omega)$
B. $H\left(e^{j \omega}\right)=e^{j 2 \omega}(4-6 \cos \omega+2 \cos 2 \omega)$
C. $H\left(e^{j \omega}\right)=e^{-j 2 \omega}(4-3 \cos \omega+\cos 2 \omega)$
D. $H\left(e^{j \omega}\right)=e^{-j 2 \omega}(4-6 \cos \omega+2 \cos 2 \omega)$
3. The magnitude $\left|H\left(e^{j \omega}\right)\right|$ of the complex frequency response of a FIR filter is plotted below.


For one of the following values of $\omega$, the input sequence

$$
x[n]=A \cos \omega n, \quad n \in \mathbf{Z}
$$

produces the same output sequence regardless of the choice of $A$. What is that value of $\omega$ ?
A. $\pi / 6$
B. $\pi / 3$
C. $\pi / 2$
D. $2 \pi / 3$
4. (HW $25 \supset \mathbf{i}$ ) In what follows (including items $\mathbf{5}$ and $\mathbf{6}$ ), consider the FIR filter given by

$$
y[n]=x[n]+\sqrt{3} x[n-1]-\sqrt{3} x[n-3]-x[n-4], \quad n \in \mathbf{Z}
$$

Determine the filter output sequence $y[\cdot]$ when the input is given by $x[n]=a^{n}$ at all times $n$.
5. (HW 25 iii) Express the filter's complex frequency response in the form

$$
H\left(e^{j \omega}\right)=j e^{-j(\omega M / 2)} F(\omega),
$$

where $F(\omega)$ is a real-valued sum of sines.
6. (HW 25 ii) In MATLAB, compute and plot the magnitude and phase response of the filter at 1024 equally spaced frequencies in $[0,2 \pi)$.

