ENEE 222: 4/25 Class

1. The signals $x(t)$ and $y(t)$ shown below are both periodic with fundamental period $T_{0}=6$.

If $\left\{X_{k}\right\}$ and $\left\{Y_{k}\right\}$ are the corresponding (complex) Fourier series coefficients, which (one or more) of the following statements is true for all indices k ?
A. $\quad Y_{k}=\frac{X_{k}+X_{-k}}{2}$
B. $\quad Y_{k}=\frac{X_{k}-X_{-k}}{2}$
C. $\quad Y_{k}$ is real-valued
D. $\quad Y_{k}$ is purely imaginary
2. The signals $x(t)$ and $y(t)$ shown below are both periodic with fundamental period $T_{0}=8$.

What is the relationship between the corresponding Fourier series coefficients $\left\{X_{k}\right\}$ and $\left\{Y_{k}\right\}$?
A. $\quad Y_{k}=X_{k} \cos (\pi k / 4)$
B. $Y_{k}=X_{k} \cos (\pi k / 2)$
C. $\quad Y_{k}=2 X_{k} \cos (\pi k / 4)$
D. $\quad Y_{k}=2 X_{k} \cos (\pi k / 2)$
3. Let $s(t)$ be a real-valued periodic signal with fundamental period $T_{0}=0.02$ seconds. If $s(t)$ contains no harmonics higher than the tenth, then

$$
x(t)=s(t) \cos (2000 \pi t)
$$

is the sum of at most
A. eleven real sinusoids with frequencies in the band $[1,000,1,500] \mathrm{Hz}$
B. twenty-one real sinusoids with frequencies in the band $[500,1,500] \mathrm{Hz}$
C. eleven real sinusoids with frequencies in the band $[2,000,2,500] \mathrm{Hz}$
D. twenty-one real sinusoids with frequencies in the band $[1,500,2,500] \mathrm{Hz}$
4. (HW 24 i) Derive the Fourier series coefficients $\left\{R_{k}\right\}$ of the periodic signal $r(t)$ of period $T_{0}=12$ (seconds) shown below.

5. (HW 24 iv) Derive the Fourier series coefficients $\left\{X_{k}\right\}$ of the periodic signal $x(t)$ shown below (curved segments are sinusoidal half-cycles).

