ENEE 222: 4/18 Class

Material: Lecture videos 18.1, 18.2, 18.3

1. The sum of three continuous-time sinusoids of frequencies

$$
\text { 18, } 24 \text { and } 96 \mathrm{~Hz}
$$

is periodic with fundamental frequency
A. 2 Hz
B. 3 Hz
C. 6 Hz
D. 18 Hz
2. The sum of two continuous-time sinusoids of frequencies

$$
2 \text { and } \sqrt{2} \mathrm{~Hz}
$$

is
A. periodic with fundamental frequency $\sqrt{2} \mathrm{~Hz}$
B. periodic with fundamental frequency $2-\sqrt{2} \mathrm{~Hz}$
C. periodic with fundamental frequency $2+\sqrt{2} \mathrm{~Hz}$
D. not periodic
3. The graph below depicts two periods of the finite real-valued Fourier series

$$
x(t)=\sum_{k=0}^{M} A_{k} \cos \left(k \Omega_{0} t+\phi_{k}\right),
$$

where all A_{k} 's are nonzero.

The value of Ω_{0}, in rad/sec, equals
A. 0.4π
B. 0.8π
C. 2.5π
D. 5π
4. If $x(t)$ is as question $\mathbf{5}$ above, then
A. $M=0$
B. $M=1$
C. $M \geq 2$
D. There is insufficient information to determine which (if any) of A-C is true.
5. (HW $22 \sim$ ii $)$ Let

$$
s(t)=-5.7+2.6 \cos (36 \pi t+0.3)+8.2 \cos (48 \pi t-2.5)+3.8 \cos (192 \pi t+1.7),
$$

where t is in seconds. Sketch the complex Fourier series spectrum of $s(t)$, with frequency Ω on the horizontal axis. Mark each spectral line (stem) with the corresponding complex coefficient value.
6. (HW $22 \sim$ iii) Suppose that $s(t)$ is sampled every $T_{s}=T_{0} / N$ seconds, where N is an integer, to produce

$$
s[n]=s\left(n T_{s}\right)
$$

Write an equation for $s[n]$ in terms of real sinusoids.
7. (HW $22 \sim \mathbf{i v}$) Use the IFFT function in MATLAB to generate 512 samples of $s(t)$ over its first period $\left[0, T_{0}\right)$.

