Material: Lecture videos 15.2, 16.1, 16.2

1. Given that

$\begin{bmatrix} 1 & 2 & 4 & 8 \end{bmatrix}^T \xrightarrow{\text{DFT}} \begin{bmatrix} 15 & -3 + 6j & -5 & -3 - 6j \end{bmatrix}^T$

which of the following vectors is the DFT of

 $\begin{bmatrix} 15 & -6 - 3j & 5 & -6 + 3j \end{bmatrix}^T$?

- A.
 $\begin{bmatrix} 4 & 2 & 16 & 32 \end{bmatrix}^T$

 B.
 $\begin{bmatrix} 4 & 32 & 16 & 8 \end{bmatrix}^T$

 C.
 $\begin{bmatrix} 8 & 4 & 32 & 16 \end{bmatrix}^T$

 D.
 $\begin{bmatrix} 16 & 8 & 4 & 32 \end{bmatrix}^T$
- **2.** The circular convolution of

 $\begin{bmatrix} 1 & 2 & 4 & 8 \end{bmatrix}^T$ and $\begin{bmatrix} a & b & c & d \end{bmatrix}^T$

produces a vector whose last entry equals

- A. a + 2b + 4c + 8d
- B. a + 8b + 4c + 2d
- $C. \quad 2a + 4b + 8c + d$

D.
$$8a + 4b + 2c + d$$

3. Let **x** be a real-valued vector of length N > 2 and **y** be a Fourier sinusoid for that length (i.e., $\mathbf{y} = \mathbf{v}^{(m)}$ for some integer m). Which (one or more) the following statements is true about the circular convolution vector

$$\mathbf{s} = \mathbf{x} \circledast \mathbf{y}$$
?

- A. s is real-valued.
- B. s is circularly conjugate-symmetric.
- C. The DFT **S** contains only one nonzero entry.
- D. \mathbf{s} is a scalar multiple of \mathbf{y} .
- 4. Suppose the DFT of the vector

$$\begin{bmatrix} a & b & c & d \end{bmatrix}^T$$

contains no zero entries. Which (one or more) of the following vectors \mathbf{x} is certain to have *exactly* four nonzero entries in its DFT \mathbf{X} ?

A.
$$\mathbf{x} = \begin{bmatrix} a & b & c & d & a & b \end{bmatrix}^T$$

B. $\mathbf{x} = \begin{bmatrix} a & b & c & d & a & b & c & d \end{bmatrix}^T$
C. $\mathbf{x} = \begin{bmatrix} a & b & c & d & a & b & c & d & a & b \end{bmatrix}^T$
D. $\mathbf{x} = \begin{bmatrix} a & b & c & d & a & b & c & d & a & b & c & d \end{bmatrix}^T$

5. (HW 18 $\sim v$) Let N > 2. For what values of ω_0 in $(0, \pi]$ is the signal vector **u** defined by

$$u[n] = \cos(\omega_0 n), \quad n = 0: N-1$$

circularly symmetric?

- 6. (HW 19 \sim ii) How are $\mathbf{x} \circledast \mathbf{y}$ and (Px) $\circledast \mathbf{y}$ related?
- 7. (HW 19 iii) If

Γ	2	-2	3	-3	5	-1	$\begin{bmatrix} x_0 \end{bmatrix}$		[−1]	
	-1	2	-2	3	-3	$ \begin{bmatrix} -1 \\ 5 \\ -3 \\ 3 \\ -2 \\ 2 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} $		-7		
	5	-1	2	-2	3	-3	x_2	=	9	
	-3	5	-1	2	-2	3	x_3		2	,
	3	-3	5	-1	2	-2	x_4		12	
L	-2	3	-3	5	-1	2	x_5		$\begin{bmatrix} -7 \end{bmatrix}$	

explain how the vector \mathbf{x} can be obtained using DFTs (as opposed to a conventional solution of a 6×6 system of linear equations).