ENEE 222: 4/02 Class

Material: Lecture videos $14.2,15.1,15.2$

1. If

$$
\mathbf{x}=\left[\begin{array}{lllll}
5 & 3-j & 4 j & 2+j & 1-2 j
\end{array}\right]^{T}
$$

and

$$
\mathbf{y}=\left[\begin{array}{lllll}
5 & 1+2 j & 2-j & -4 j & 3+j
\end{array}\right]^{T},
$$

then the DFT's \mathbf{X} and \mathbf{Y} are related by
A. $\quad \mathbf{Y}=\mathbf{R X}$
B. $\mathbf{Y}=\mathbf{X}^{*}$
C. $\quad \mathbf{Y}=\mathbf{R X}^{*}$
D. $\mathbf{Y}=-\mathbf{X}^{*}$
2. If

$$
\left[\begin{array}{llllllll}
a & b & c & d & e & f & g & h
\end{array}\right]^{T} \quad \stackrel{\text { DFT }}{\longleftrightarrow} \quad\left[\begin{array}{llllllll}
A & B & C & D & E & F & G & H
\end{array}\right]^{T},
$$

then the DFT of

$$
\left[\begin{array}{llllllll}
a & -h & g & -f & e & -d & c & -b
\end{array}\right]^{T}
$$

is given by
A. $\left.\begin{array}{cccccccc}A & -H & G & -F & E & -D & C & -B\end{array}\right]^{T}$
B. $\quad\left[\begin{array}{llllllll}E & -D & C & -B & A & -H & G & -F\end{array}\right]^{T}$
C. $\quad\left[\begin{array}{llllllll}E & D & C & B & A & H & G & F\end{array}\right]^{T}$
D. $\quad\left[\begin{array}{llllllll}A & H & G & F & -E & -D & -C & -B\end{array}\right]^{T}$
3. If \mathbf{x} is a real-valued signal vector of length $N>2$, which (one or more) of the signals \mathbf{s} below have the same magnitude spectrum as \mathbf{x} (i.e., $|S[\cdot]|=|X[\cdot]|)$?
A. $\mathbf{s}=\mathbf{R x}$
B. $\mathbf{s}=\mathbf{P x}$
C. $\mathbf{s}=\mathbf{F x}$
D. $\mathbf{s}=(\mathbf{x}+\mathbf{R} \mathbf{x}) / 2$
4. If \mathbf{x} is a real-valued signal vector of length $N>2$, which (one or more) of the following vectors has real-valued DFT?
A. x
B. $\mathbf{x}+\mathbf{R x}$
C. $\mathbf{P} \mathbf{x}+\mathbf{P}^{-1} \mathbf{x}$
D. $\mathbf{F x}+\mathbf{F}^{-1} \mathbf{x}$
5. (HW 17 つ) The DFT of

$$
\mathbf{s}=\left[\begin{array}{llllllll}
a & b & c & d & e & f & g & h
\end{array}\right]^{T}
$$

is given by

$$
\mathbf{S}=\left[\begin{array}{llllllll}
A & B & C & D & E & F & G & H
\end{array}\right]^{T}
$$

Determine the DFT's of

- $\mathbf{s}^{(3)}=2\left[\begin{array}{llllllll}a & 0 & -c & 0 & e & 0 & -g & 0\end{array}\right]^{T}$
- $\mathbf{s}^{(5)}=\left[\begin{array}{llllllll}h-b & a-c & b-d & c-e & d-f & e-g & f-h & g-a\end{array}\right]^{T}$

6. (HW $18 \mathbf{i} \mathbf{i i}$) Let \mathbf{x} be a real-valued vector of length $N=64$, with DFT X satisfying

$$
X[k] \neq 0 \text { for } k=0: 13 \quad \text { and } \quad X[k]=0 \text { for } k=14: 32
$$

If

$$
x^{(1)}[n]=x[n] \cos (3 \pi n / 8) \text { for } n=0: 63,
$$

for which frequency indices k does $X^{(1)}[k]$ equal zero?
7. (HW $18 \sim \mathbf{v}$) Let $N>2$. For what values of ω_{0} in $(0, \pi]$ is the signal vector \mathbf{u} defined by

$$
u[n]=\cos \left(\omega_{0} n\right), \quad n=0: N-1
$$

circularly symmetric?

