Material: Lecture videos 14.2, 15.1, 15.2

1. If

$$\mathbf{x} = [5 \quad 3-j \quad 4j \quad 2+j \quad 1-2j]^T$$

and

$$\mathbf{y} = \begin{bmatrix} 5 & 1+2j & 2-j & -4j & 3+j \end{bmatrix}^T$$

then the DFT's \mathbf{X} and \mathbf{Y} are related by

A. $\mathbf{Y} = \mathbf{R}\mathbf{X}$ B. $\mathbf{Y} = \mathbf{X}^*$ $C. \quad \mathbf{Y} = \mathbf{R}\mathbf{X}^*$ D. $\mathbf{Y} = -\mathbf{X}^*$

 $[a \ b \ c \ d \ e \ f \ g \ h]^T \qquad \stackrel{\mathrm{DFT}}{\longleftrightarrow} \qquad [A \ B \ C \ D \ E \ F \ G \ H]^T ,$ then the DFT of $\begin{bmatrix} a & -h & g & -f & e & -d & c & -b \end{bmatrix}^T$

is given by

 $[A -H G -F E -D C -B]^T$ Α. $[E -D C -B A -H G -F]^T$ В. $\begin{bmatrix} E & D & C & B & A & H & G & F \end{bmatrix}^T$ С. $\begin{bmatrix} A & H & G & F & -E & -D & -C & -B \end{bmatrix}^T$ D.

- **3.** If **x** is a real-valued signal vector of length N > 2, which (one or more) of the signals **s** below have the same magnitude spectrum as ${\bf x}$ (i.e., $|S[\,\cdot\,]| = |X[\,\cdot\,]|)?$
 - A. $\mathbf{s} = \mathbf{R}\mathbf{x}$
 - B. $\mathbf{s} = \mathbf{P}\mathbf{x}$
 - C. $\mathbf{s} = \mathbf{F}\mathbf{x}$
 - D. $\mathbf{s} = (\mathbf{x} + \mathbf{R}\mathbf{x})/2$
- 4. If x is a real-valued signal vector of length N > 2, which (one or more) of the following vectors has real-valued DFT?
 - Α. \mathbf{x}
 - В. $\mathbf{x} + \mathbf{R}\mathbf{x}$
 - C. $\mathbf{P}\mathbf{x} + \mathbf{P}^{-1}\mathbf{x}$
 - $\mathbf{F}\mathbf{x} + \mathbf{F}^{-1}\mathbf{x}$ D.

5. (HW 17 \supset) The DFT of

$$\mathbf{s} = \begin{bmatrix} a & b & c & d & e & f & g & h \end{bmatrix}^T$$

is given by

$$\mathbf{S} = [A \quad B \quad C \quad D \quad E \quad F \quad G \quad H]^T$$

Determine the DFT's of

•
$$\mathbf{s}^{(3)} = 2 \begin{bmatrix} a & 0 & -c & 0 & e & 0 & -g & 0 \end{bmatrix}^T$$

• $\mathbf{s}^{(5)} = \begin{bmatrix} h-b & a-c & b-d & c-e & d-f & e-g & f-h & g-a \end{bmatrix}^T$

6. (HW 18 i ii) Let x be a *real-valued* vector of length N = 64, with DFT X satisfying

$$X[k] \neq 0$$
 for $k = 0:13$ and $X[k] = 0$ for $k = 14:32$

 \mathbf{If}

$$x^{(1)}[n] = x[n]\cos(3\pi n/8)$$
 for $n = 0:63$,

for which frequency indices k does $X^{(1)}[k]$ equal zero?

7. (HW 18 \sim v) Let N > 2. For what values of ω_0 in $(0, \pi]$ is the signal vector **u** defined by

 $u[n] = \cos(\omega_0 n), \quad n = 0: N - 1$

circularly symmetric?