ENEE 222: 3/28 Class

Material: Lecture videos 13.2, 14.1, 14.2

- P: circular shift (right/downward) matrix
- **R**: circular reversal matrix
- F: Fourier modulation matrix
- 1. The magnitude and phase spectra of a vector $\mathbf{s} = s[0:11]$ are plotted below.

Which of the following is true (for n = 0: 11)?

A.
$$s[n] = 8 \cos\left(\frac{\pi n}{12} + 0.5\right)$$

B. $s[n] = 8 \cos\left(\frac{\pi n}{6} + 0.5\right)$
C. $s[n] = 48 \cos\left(\frac{\pi n}{12} + 0.5\right)$
D. $s[n] = 96 \cos\left(\frac{\pi n}{6} - 0.5\right)$

2. If

$$\mathbf{x} = \begin{bmatrix} a & b & c & d & e & f & g & h \end{bmatrix}^T,$$

which of the following vectors equals $\mathbf{P}^2 \mathbf{R} \mathbf{x}$?

- A. $\begin{bmatrix} a & h & g & f & e & d & c & b \end{bmatrix}^T$ B. $\begin{bmatrix} g & h & a & b & c & d & e & f \end{bmatrix}^T$ C. $\begin{bmatrix} c & b & a & h & g & f & e & d \end{bmatrix}^T$ D. $\begin{bmatrix} g & f & e & d & c & b & a & h \end{bmatrix}^T$
- **3.** If **x** has length N = 32, then the vector

$$\mathbf{y} = (\mathbf{F}^6 + \mathbf{F}^{-6})\mathbf{x}$$

is also given (for n = 0:31) by the equation

- A. $y[n] = 2x[n]\cos(3\pi n/8)$
- B. $y[n] = 2x[n]\sin(3\pi n/8)$
- C. $y[n] = 2x[n]\cos(3\pi n/16)$
- D. $y[n] = 2x[n]\sin(3\pi n/16)$

- 4. (HW $15 \subset v$) The real-valued signal vector s has DFT
 - $\mathbf{S} = \begin{bmatrix} 16 & z_1 & z_2 & z_3 & -4 & 7+j & 2j & -4+5j \end{bmatrix}^T$

The n^{th} sample s[n] can be written as the sum of real sinusoids $A\cos(\omega n + \phi)$, where ω takes values 0, $\pi/4$, $\pi/2$, $3\pi/4$ and π . Determine the parameters (A and ϕ) for $\omega = 0$, $\pi/4$ and π .

5. (HW 16 ii) Vector s is given by

$$\mathbf{s} = \left[\begin{array}{cccccccc} a & b & c & d & e & f & g & h \end{array} \right]^T$$

Express the following vectors in terms of \mathbf{P} , \mathbf{R} , \mathbf{F} and \mathbf{s} :

• $\mathbf{s}^{(5)} = \begin{bmatrix} h-b & a-c & b-d & c-e & d-f & e-g & f-h & g-a \end{bmatrix}^T$ • $\mathbf{s}^{(6)} = \begin{bmatrix} a+e & b-f & c+g & d-h & e+a & f-b & g+c & h-d \end{bmatrix}^T$ • $\mathbf{s}^{(7)} = \begin{bmatrix} 0 & \sqrt{2}b & 2c & \sqrt{2}d & 0 & -\sqrt{2}f & -2g & -\sqrt{2}h \end{bmatrix}^T$