ENEE 222: 3/28 Class

Material: Lecture videos 13.2, 14.1, 14.2
\mathbf{P} : circular shift (right/downward) matrix
R: circular reversal matrix
F: Fourier modulation matrix

1. The magnitude and phase spectra of a vector $\mathbf{s}=s[0: 11]$ are plotted below.

Which of the following is true (for $n=0: 11$)?
A. $s[n]=8 \cos \left(\frac{\pi n}{12}+0.5\right)$
B. $s[n]=8 \cos \left(\frac{\pi n}{6}+0.5\right)$
C. $s[n]=48 \cos \left(\frac{\pi n}{12}+0.5\right)$
D. $s[n]=96 \cos \left(\frac{\pi n}{6}-0.5\right)$
2. If

$$
\mathbf{x}=\left[\begin{array}{llllllll}
a & b & c & d & e & f & g & h
\end{array}\right]^{T},
$$

which of the following vectors equals $\mathbf{P}^{2} \mathbf{R x}$?
A. $\quad\left[\begin{array}{llllllll}a & h & g & f & e & d & c & b\end{array}\right]^{T}$
B. $\quad\left[\begin{array}{llllllll}g & h & a & b & c & d & e & f\end{array}\right]^{T}$
C. $\left[\begin{array}{llllllll}c & b & a & h & g & f & e & d\end{array}\right]^{T}$
D. $\quad\left[\begin{array}{llllllll}g & f & e & d & c & b & a & h\end{array}\right]^{T}$
3. If \mathbf{x} has length $N=32$, then the vector

$$
\mathbf{y}=\left(\mathbf{F}^{6}+\mathbf{F}^{-6}\right) \mathbf{x}
$$

is also given (for $n=0: 31$) by the equation
A. $y[n]=2 x[n] \cos (3 \pi n / 8)$
B. $y[n]=2 x[n] \sin (3 \pi n / 8)$
C. $y[n]=2 x[n] \cos (3 \pi n / 16)$
D. $y[n]=2 x[n] \sin (3 \pi n / 16)$
4. (HW $\mathbf{1 5} \subset \mathbf{v}$) The real-valued signal vector s has DFT

$$
\mathbf{S}=\left[\begin{array}{llllllll}
16 & z_{1} & z_{2} & z_{3} & -4 & 7+j & 2 j & -4+5 j
\end{array}\right]^{T}
$$

The $n^{\text {th }}$ sample $s[n]$ can be written as the sum of real sinusoids $A \cos (\omega n+\phi)$, where ω takes values $0, \pi / 4, \pi / 2,3 \pi / 4$ and π. Determine the parameters $(A$ and $\phi)$ for $\omega=0, \pi / 4$ and π.
5. (HW 16 ii) Vector s is given by

$$
\mathbf{s}=\left[\begin{array}{llllllll}
a & b & c & d & e & f & g & h
\end{array}\right]^{T}
$$

Express the following vectors in terms of $\mathbf{P}, \mathbf{R}, \mathbf{F}$ and \mathbf{s} :

- $\mathbf{s}^{(5)}=\left[\begin{array}{llllllll}h-b & a-c & b-d & c-e & d-f & e-g & f-h & g-a\end{array}\right]^{T}$
- $\mathbf{s}^{(6)}=\left[\begin{array}{llllllll}a+e & b-f & c+g & d-h & e+a & f-b & g+c & h-d\end{array}\right]^{T}$
- $\mathbf{s}^{(7)}=\left[\begin{array}{llllllll}0 & \sqrt{2} b & 2 c & \sqrt{2} d & 0 & -\sqrt{2} f & -2 g & -\sqrt{2} h\end{array}\right]^{T}$

