ENEE 222: 3/26 Class

Material: Lecture videos 13.1, 13.2

1. The DFT of a real-valued vector $\mathbf{x}=x[0: 7]$ is given by

$$
\mathbf{X}=\left[\begin{array}{llllllll}
1 & 2+j & -4 & 5+3 j & X_{4} & X_{5} & X_{6} & X_{7}
\end{array}\right]^{T}
$$

Which (one or more) of the following statements are true?
A. X_{4} is not necessarily real-valued.
B. The values X_{5}, X_{6} and X_{7} are arbitrary (i.e., unrestricted).
C. $X_{5}=2-j$
D. $X_{5}=5-3 j$
2. Which of the following signals \mathbf{x} could have the (real-valued) DFT \mathbf{X} plotted below?

A. $\mathbf{x}=\left[\begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 3 & 2 & 1\end{array}\right]^{T}$
B. $\mathbf{x}=\left[\begin{array}{llllllll}5 & 1 & 5 & 1 & 5 & 1 & 5 & 1\end{array}\right]^{T}$
C. $\mathbf{x}=\left[\begin{array}{llllllll}1 & 0 & 3 & 0 & 5 & 0 & 3 & 0\end{array}\right]^{T}$
D. $\mathbf{x}=\left[\begin{array}{llllllll}2 & 0 & 0 & 0 & 2 & 0 & 0 & 0\end{array}\right]^{T}$
3. Which of the following signals $\mathbf{x}=x[0: 11]$ could have the (real-valued) DFT \mathbf{X} plotted below?

A. $x[n]=\cos (5 \pi n / 6)$
B. $x[n]=\sin (5 \pi n / 6)$
C. $x[n]=\cos (5 \pi n / 6)+2 \sin (5 \pi n / 6)$
D. $x[n]=\cos (5 \pi n / 6)+\sin (7 \pi n / 6)$
4. (HW 14 i) The entries of the time-domain vector

$$
\mathbf{x}^{(1)}=\left[\begin{array}{lllllllll}
2 & -1 & -1 & 2 & -1 & -1 & 2 & -1 & -1
\end{array}\right]^{T}
$$

are given by $2 \cos \omega n$, where $n=0: 8$. What is the value of ω ? Express $\mathbf{x}^{(1)}$ as the sum of two Fourier sinusoids. By considering the appropriate column of the Fourier matrix V, determine and display the DFT $\mathbf{X}^{(1)}$.
5. (HW 14 ii) Similarly, express the time-domain vector

$$
\mathbf{x}^{(2)}=\left[\begin{array}{lllllllll}
0 & 1 & -1 & 0 & 1 & -1 & 0 & 1 & -1
\end{array}\right]^{T}
$$

as a linear combination of the same two Fourier sinusoids as in 4 above. Hence determine and display the DFT $\mathbf{X}^{(2)}$.
6. (HW 15 i) A real-valued signal vector \mathbf{s} of length $N=8$ has DFT

$$
\mathbf{S}=\left[\begin{array}{cccccccc}
16 & z_{1} & z_{2} & z_{3} & -4 & 7+j & 2 j & -4+j 5
\end{array}\right]^{T}
$$

What are the values of z_{1}, z_{2} and z_{3} ?
7. (HW $15 \sim \mathbf{i i}$, iii) Without inverting the DFT \mathbf{S} in $\mathbf{6}$ above, evaluate the sum

$$
s[0]-s[1]+s[2]-s[3]+s[4]-s[5]+s[6]-s[7]
$$

