ENEE 222: 3/26 Class

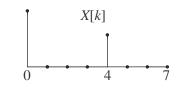
Material: Lecture videos 13.1, 13.2

1. The DFT of a *real-valued* vector $\mathbf{x} = x[0:7]$ is given by

 $\mathbf{X} = \begin{bmatrix} 1 & 2+j & -4 & 5+3j & X_4 & X_5 & X_6 & X_7 \end{bmatrix}^T$

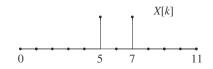
Which (one or more) of the following statements are true?

- A. X_4 is not necessarily real-valued.
- B. The values X_5 , X_6 and X_7 are arbitrary (i.e., unrestricted).
- C. $X_5 = 2 j$
- D. $X_5 = 5 3j$
- 2. Which of the following signals \mathbf{x} could have the (real-valued) DFT \mathbf{X} plotted below?



A. $\mathbf{x} = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 3 & 2 & 1 \end{bmatrix}^T$ B. $\mathbf{x} = \begin{bmatrix} 5 & 1 & 5 & 1 & 5 & 1 & 5 & 1 \end{bmatrix}^T$ C. $\mathbf{x} = \begin{bmatrix} 1 & 0 & 3 & 0 & 5 & 0 & 3 & 0 \end{bmatrix}^T$ D. $\mathbf{x} = \begin{bmatrix} 2 & 0 & 0 & 0 & 2 & 0 & 0 & 0 \end{bmatrix}^T$

3. Which of the following signals $\mathbf{x} = x[0:11]$ could have the (real-valued) DFT **X** plotted below?



- A. $x[n] = \cos(5\pi n/6)$
- B. $x[n] = \sin(5\pi n/6)$
- C. $x[n] = \cos(5\pi n/6) + 2\sin(5\pi n/6)$
- D. $x[n] = \cos(5\pi n/6) + \sin(7\pi n/6)$

4. (HW 14 i) The entries of the time-domain vector

are given by $2 \cos \omega n$, where n = 0: 8. What is the value of ω ? Express $\mathbf{x}^{(1)}$ as the sum of two Fourier sinusoids. By considering the appropriate column of the Fourier matrix \mathbf{V} , determine and display the DFT $\mathbf{X}^{(1)}$.

5. (HW 14 ii) Similarly, express the time-domain vector

 $\mathbf{x}^{(2)} = \begin{bmatrix} 0 & 1 & -1 & 0 & 1 & -1 & 0 & 1 & -1 \end{bmatrix}^T$

as a linear combination of the same two Fourier sinusoids as in 4 above. Hence determine and display the DFT $\mathbf{X}^{(2)}$.

6. (HW 15 i) A real-valued signal vector s of length N = 8 has DFT

$$\mathbf{S} = \begin{bmatrix} 16 & z_1 & z_2 & z_3 & -4 & 7+j & 2j & -4+j5 \end{bmatrix}^T$$

What are the values of z_1 , z_2 and z_3 ?

7. (HW 15 \sim ii, iii) Without inverting the DFT S in 6 above, evaluate the sum

$$s[0] - s[1] + s[2] - s[3] + s[4] - s[5] + s[6] - s[7]$$