ENEE 222: 3/14 Class

Material: Lecture videos 12.1, 12.2, 12.3

- 1. Which of the following statements are true about the discrete Fourier transform (or spectrum) \mathbf{X} of a signal vector \mathbf{x} ?
 - A. \mathbf{x} and \mathbf{X} are vectors of the same length.
 - B. \mathbf{X} contains information about the amplitude and phase of standard sinusoidal vectors which, when summed together, produce the signal vector \mathbf{x} .
 - C. If one of the entries of the DFT \mathbf{X} is zero, then \mathbf{x} must also contain (at least) one zero entry.
 - D. If \mathbf{x} is real-valued, then so is \mathbf{X} .
- 2. What is the smallest vector length N such that the $N \times N$ matrix of Fourier (DFT) sinusoids contains the entry

$$-\frac{\sqrt{3}}{2}+\frac{j}{2}$$
 ?

- A. 6
- B. 8
- C.~12
- D. 24
- **3.** Which of the following signals \mathbf{x} could have the (real-valued) DFT \mathbf{X} plotted below?

4. (HW 13 \supset) Construct the matrix

$$\mathbf{V} = \begin{bmatrix} \mathbf{v}^{(0)} & \mathbf{v}^{(1)} & \mathbf{v}^{(2)} & \mathbf{v}^{(3)} & \mathbf{v}^{(4)} & \mathbf{v}^{(5)} & \mathbf{v}^{(6)} & \mathbf{v}^{(7)} \end{bmatrix}$$

of Fourier sinusoids of length N = 8.

5. (HW 13 \subset i) Compute the DFT X of

$$\mathbf{x} = \begin{bmatrix} 3 & 1 & -5 & 3 & 3 & 1 & -5 & 3 \end{bmatrix}^T$$

6. (HW 13 ~v) Determine the least squares approximation $\hat{\mathbf{x}}$ of \mathbf{x} in terms of $\mathbf{v}^{(2)}$ and $\mathbf{v}^{(6)}$. Display the entries of $\hat{\mathbf{x}}$ and compute the squared error norm $\|\mathbf{x} - \hat{\mathbf{x}}\|^2$.