ENEE 222: 3/07 Class

Material: Lecture videos 10.1, $\mathbf{1 0 . 2}$

1. If vectors \mathbf{a} and \mathbf{b} are as shown in the figure below, which (one or more) of the following statements are true?

A. Vectors \mathbf{a} and \mathbf{b} are orthogonal.
B. Vectors \mathbf{a} and $\mathbf{b}-\mathbf{a}$ are orthogonal.
C. $\langle\mathbf{a}, \mathbf{b}\rangle=\|\mathbf{a}\| \cdot\|\mathbf{b}\|$
D. $\langle\mathbf{a}, \mathbf{b}\rangle=\|\mathbf{a}\|^{2}$
2. The angle between $\mathbf{a}=\left[\begin{array}{llll}3 & 1 & 1 & 5\end{array}\right]^{T}$ and $\mathbf{b}=\left[\begin{array}{llll}1 & -5 & -1 & -3\end{array}\right]^{T}$ equals
A. $\pi / 3$
B. $\cos ^{-1}(-1 / 8)$
C. $\cos ^{-1}(-1 / 72)$
D. $2 \pi / 3$
3. Vectors \mathbf{u}, \mathbf{v} and \mathbf{w} are mutually orthogonal and such that $\|\mathbf{u}\|=1,\|\mathbf{v}\|=2$ and $\|\mathbf{w}\|=3$. Let

$$
\mathbf{s}=5 \mathbf{u}+7 \mathbf{v}-2 \mathbf{w}
$$

If $\hat{\mathbf{s}}$ is the projection of \mathbf{s} onto the subspace defined by \mathbf{u} and \mathbf{v}, then $\|\mathbf{s}-\hat{\mathbf{s}}\|$ equals
A. 6
B. 12
C. 18
D. -6
4. (HW 11 i) Show that

$$
\mathbf{v}^{(1)}=\left[\begin{array}{llll}
3 & 1 & 1 & -1
\end{array}\right]^{T}, \quad \mathbf{v}^{(2)}=\left[\begin{array}{llll}
1 & -2 & 0 & 1
\end{array}\right]^{T} \quad \text { and } \quad \mathbf{v}^{(3)}=\left[\begin{array}{llll}
-1 & 1 & 5 & 3
\end{array}\right]^{T}
$$

are mutually orthogonal, and compute their norms.
5. (HW 11 ii) If $\mathbf{s}=\left[\begin{array}{llll}1 & 6 & 2 & 7\end{array}\right]^{T}$, determine the projection $\mathbf{f}^{(i)}$ of \mathbf{s} onto each $\mathbf{v}^{(i)}$.
6. (HW $11 \mathbf{i v})$ Determine the angle between \mathbf{s} and the plane defined by $\mathbf{v}^{(2)}$ and $\mathbf{v}^{(3)}$.
7. (HW $11 \mathbf{v}, \mathbf{v i})$ If \mathbf{g} is the projection of \mathbf{s} onto the three-dimensional subspace defined by $\mathbf{v}^{(1)}, \mathbf{v}^{(2)}$ and $\mathbf{v}^{(3)}$, determine the error vector $\mathbf{s}-\mathbf{g}$. What special property does $\mathbf{s}-\mathbf{g}$ have?
8. (HW $11 \supset$ vii) Solve the system

$$
\left[\begin{array}{rrrr}
3 & 1 & -1 & 1 \\
1 & -2 & 1 & 2 \\
1 & 0 & 5 & -2 \\
-1 & 1 & 3 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right]
$$

without using Gaussian elimination.

