ENEE 222: 2/26 Class

Material: Lecture videos 9.1, 9.2, 9.3

1. Which of the following linear transformations $\mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ are invertible?
A. Rotation of a vector \mathbf{x} about the vertical $\left(x_{3}\right)$ axis through angle θ.
B. Reflection of a vector \mathbf{x} across the plane $x_{1}=x_{2}$.
C. Projection of a vector \mathbf{x} onto the plane $x_{1}=x_{2}$.
D. Reflection of a vector \mathbf{x} across the horizontal $\left(x_{1}\right)$ axis.
2. If

$$
\mathbf{A}\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \text { and } \quad \mathbf{A}\left[\begin{array}{r}
-1 \\
4
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

then $\mathbf{A}^{-1}=$
A. $\left[\begin{array}{rr}2 & -1 \\ 3 & 4\end{array}\right]$
B. $\left[\begin{array}{ll}2 & 1 \\ 3 & 0\end{array}\right]$
C. $\left[\begin{array}{rr}-1 & 1 \\ 4 & 1\end{array}\right]$
D. $\left[\begin{array}{rr}2 & -3 \\ 3 & 1\end{array}\right]$
3. You are given

$$
\mathbf{L}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
-1 & -1 & 1 & 0 \\
-1 & -1 & -1 & 1
\end{array}\right] \quad \text { and } \quad \mathbf{L}^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
2 & 1 & 1 & 0 \\
a & b & c & d
\end{array}\right]
$$

What is the value of a ?
A. 0
B. 3
C. 4
D. -3
4. Here's a section of a Gaussian elimination table:

m	x_{1}	x_{2}	x_{3}	b
	$\boxed{4}$	5	2	12
-1	4	7	-2	4
\boldsymbol{c}	3	3	2	9
	4	5	2	12
	0	$\boxed{2}$	-4	-8
$3 / 8$	0	$-3 / 4$	$1 / 2$	0

What is the value of the multiplier c ?
A. $3 / 4$
B. $-3 / 4$
C. $4 / 3$
D. $-4 / 3$
5. (HW 10 i) Let

$$
\mathbf{L}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
1 & 2 & 0 & 0 \\
1 / 2 & -3 / 2 & 2 & 0 \\
1 & 4 & 1 & 1
\end{array}\right]
$$

Solve $\mathbf{L x}=\mathbf{b}$ for an arbitrary vector \mathbf{b}. Display \mathbf{L}^{-1}.
6. (HW $\mathbf{1 0} \subset \mathbf{i i}$) Let $\mathbf{G}=\mathbf{P B D}$, where \mathbf{P} is a permutation, \mathbf{B} is invertible and \mathbf{D} is diagonal (and invertible also). Write an expression for \mathbf{G}^{-1}, and interpret the operations in that expression in terms of scaling and permutation of rows/columns.
7. (HW $10 \subset$ iii) If

$$
\mathbf{A}=\left[\begin{array}{rrrr}
2 & 1 & -1 & 1 \\
2 & -5 & 1 & 7 \\
1 & 5 & 2 & -2 \\
2 & -11 & 5 & 13
\end{array}\right]
$$

and $\mathbf{b}=\left[\begin{array}{llll}12 & 8 & 1 & 6 c\end{array}\right]^{T}$, reduce the equation $\mathbf{A x}=\mathbf{b}$ to $\mathbf{U x}=\mathbf{r}$, where \mathbf{U} is uppertriangular.

