ENEE 222: 2/26 Class

Material: Lecture videos 9.1, 9.2, 9.3

- 1. Which of the following linear transformations $\mathbf{R}^3 \to \mathbf{R}^3$ are invertible?
 - A. Rotation of a vector **x** about the vertical (x_3) axis through angle θ .
 - B. Reflection of a vector **x** across the plane $x_1 = x_2$.
 - C. Projection of a vector **x** onto the plane $x_1 = x_2$.
 - D. Reflection of a vector \mathbf{x} across the horizontal (x_1) axis.

2. If

$$\mathbf{A}\begin{bmatrix}2\\3\end{bmatrix} = \begin{bmatrix}1\\0\end{bmatrix} \quad \text{and} \quad \mathbf{A}\begin{bmatrix}-1\\4\end{bmatrix} = \begin{bmatrix}1\\1\end{bmatrix},$$

then \mathbf{A}^{-1} =

A.
$$\begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix}$$
B. $\begin{bmatrix} 2 & 1 \\ 3 & 0 \end{bmatrix}$ C. $\begin{bmatrix} -1 & 1 \\ 4 & 1 \end{bmatrix}$ D. $\begin{bmatrix} 2 & -3 \\ 3 & 1 \end{bmatrix}$

3. You are given

$$\mathbf{L} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ -1 & -1 & 1 & 0 \\ -1 & -1 & -1 & 1 \end{bmatrix} \quad \text{and} \quad \mathbf{L}^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 \\ a & b & c & d \end{bmatrix}$$

What is the value of a?

A. 0 B. 3 C. 4 D. -3

4. Here's a section of a Gaussian elimination table:

m	x_1	x_2	x_3	b
	4	5	2	12
-1	4	7	-2	4
c	3	3	2	9
	4	5	2	12
	0	2	-4	-8
3/8	0	-3/4	1/2	0

What is the value of the multiplier c?

A. 3/4 B. -3/4 C. 4/3 D. -4/3

5. (HW 10 i) Let

$$\mathbf{L} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 1/2 & -3/2 & 2 & 0 \\ 1 & 4 & 1 & 1 \end{bmatrix}$$

Solve $\mathbf{L}\mathbf{x} = \mathbf{b}$ for an arbitrary vector \mathbf{b} . Display \mathbf{L}^{-1} .

- 6. (HW 10 \subset ii) Let $\mathbf{G} = \mathbf{PBD}$, where \mathbf{P} is a permutation, \mathbf{B} is invertible and \mathbf{D} is diagonal (and invertible also). Write an expression for \mathbf{G}^{-1} , and interpret the operations in that expression in terms of scaling and permutation of rows/columns.
- 7. (HW $10 \subset iii$) If

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & -1 & 1 \\ 2 & -5 & 1 & 7 \\ 1 & 5 & 2 & -2 \\ 2 & -11 & 5 & 13 \end{bmatrix}$$

and $\mathbf{b} = \begin{bmatrix} 12 & 8 & 1 & 6c \end{bmatrix}^T$, reduce the equation $\mathbf{A}\mathbf{x} = \mathbf{b}$ to $\mathbf{U}\mathbf{x} = \mathbf{r}$, where \mathbf{U} is upper-triangular.