ENEE 222: 02/21 Class

Material: Lecture videos 8.1, 8.2

1. If

$$
\mathbf{A}=\left[\begin{array}{rrr}
1 & -2 & 4 \\
2 & 0 & 3
\end{array}\right] \quad \text { and } \quad \mathbf{B}=\left[\begin{array}{rr}
5 & -1 \\
1 & 2 \\
-1 & 3
\end{array}\right],
$$

the product $\mathbf{A B}$ equals
A. $\left[\begin{array}{rr}1 & 7 \\ -7 & 7\end{array}\right]$
B. $\left[\begin{array}{rr}-1 & 7 \\ 7 & 7\end{array}\right]$
C. $\left[\begin{array}{rr}1 & -7 \\ 7 & 7\end{array}\right]$
D. $\left[\begin{array}{rr}1 & 7 \\ 7 & -7\end{array}\right]$
2. Let \mathbf{a} and \mathbf{b} be n-dimensional column vectors (where $n>1$) having real-valued entries. If

$$
\mathbf{C}=\mathbf{a}^{T} \mathbf{b} \mathbf{b}^{T} \mathbf{a},
$$

which (one ore more) of the following statements are true about \mathbf{C} ?
A. \mathbf{C} is a $n \times n$ matrix
B. \mathbf{C} is scalar (i.e., 1×1)
C. $\mathbf{C}=\mathbf{C}^{T}$
D. \mathbf{C} may contain both positive and negative entries, depending on the choice of \mathbf{a} and \mathbf{b}.
3. Let

$$
\mathbf{A}=\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right], \quad \mathbf{P}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right] \quad \text { and } \quad \mathbf{B}=\mathbf{A P}
$$

Then $\mathbf{A}=\mathbf{B Q}$, where $\mathbf{Q}=$
A. $\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$
B. $\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$
C. $\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$
D. $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$
4. (HW 7 iii) Express the vector $\mathbf{v}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]^{T}$ as the sum of two vectors, one parallel to $\mathbf{s}=$ $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]^{T}$ and another perpendicular to \mathbf{s}. Hence determine the reflection of \mathbf{v} about the plane through the origin which is normal to \mathbf{s}.
5. (HW 8 i) If (r, s) is any point other than the origin on the Cartesian plane, determine the positive scaling factor α such that

$$
\alpha(r, s)=(\cos \theta, \sin \theta)
$$

for some (unique) angle θ. What geometric transformation does the matrix

$$
\mathbf{A}=\left[\begin{array}{rr}
r & -s \\
s & r
\end{array}\right]
$$

represent?
6. (HW 8 iii) If

$$
\mathbf{A}=\left[\begin{array}{rr}
\cos (5 \pi / 24) & -\sin (5 \pi / 24) \\
\sin (5 \pi / 24) & \cos (5 \pi / 24)
\end{array}\right] \quad \text { and } \quad \mathbf{B}=\left[\begin{array}{rr}
\cos (3 \pi / 16) & \sin (3 \pi / 16) \\
-\sin (3 \pi / 16) & \cos (3 \pi / 16)
\end{array}\right]
$$

find the matrix \mathbf{C} such that $\mathbf{A}^{2} \mathbf{C B}^{2}$ equals the identity matrix \mathbf{I}.
7. ($\subset \mathbf{H W} 9$) If

$$
\mathbf{A}=\left[\begin{array}{llll}
a & b & 0 & c \\
d & e & f & 0 \\
0 & r & s & t \\
u & 0 & v & w
\end{array}\right]
$$

find matrices \mathbf{P} and \mathbf{Q} such that

$$
\mathbf{P A Q}=\left[\begin{array}{lll}
a & b-r & -s
\end{array}\right]
$$

