Material: Lecture videos 8.1, 8.2

1. If

$$\mathbf{A} = \begin{bmatrix} 1 & -2 & 4 \\ 2 & 0 & 3 \end{bmatrix} \quad \text{and} \quad \mathbf{B} = \begin{bmatrix} 5 & -1 \\ 1 & 2 \\ -1 & 3 \end{bmatrix},$$

the product AB equals

A.
$$\begin{bmatrix} 1 & 7 \\ -7 & 7 \end{bmatrix}$$
 B. $\begin{bmatrix} -1 & 7 \\ 7 & 7 \end{bmatrix}$ C. $\begin{bmatrix} 1 & -7 \\ 7 & 7 \end{bmatrix}$ D. $\begin{bmatrix} 1 & 7 \\ 7 & -7 \end{bmatrix}$

2. Let **a** and **b** be *n*-dimensional column vectors (where n > 1) having real-valued entries. If

$$\mathbf{C} = \mathbf{a}^T \mathbf{b} \, \mathbf{b}^T \mathbf{a} \; ,$$

which (one ore more) of the following statements are true about \mathbf{C} ?

- A. C is a $n \times n$ matrix
- B. C is scalar (i.e., 1×1)
- C. $\mathbf{C} = \mathbf{C}^T$
- D. C may contain both positive and negative entries, depending on the choice of a and b.
- **3.** Let

$$\mathbf{A} = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}, \quad \mathbf{P} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \quad \text{and} \quad \mathbf{B} = \mathbf{AP}$$

Then $\mathbf{A} = \mathbf{B}\mathbf{Q}$, where $\mathbf{Q} =$

A.
$$\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
B. $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ C. $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$ D. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$

- 4. (HW 7 iii) Express the vector $\mathbf{v} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$ as the sum of two vectors, one parallel to $\mathbf{s} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$ and another perpendicular to \mathbf{s} . Hence determine the reflection of \mathbf{v} about the plane through the origin which is normal to \mathbf{s} .
- 5. (HW 8 i) If (r, s) is any point other than the origin on the Cartesian plane, determine the positive scaling factor α such that

$$\alpha(r, s) = (\cos \theta, \sin \theta)$$

for some (unique) angle θ . What geometric transformation does the matrix

$$\mathbf{A} = \left[\begin{array}{cc} r & -s \\ s & r \end{array} \right]$$

represent?

6. (HW 8 iii) If

$$\mathbf{A} = \begin{bmatrix} \cos(5\pi/24) & -\sin(5\pi/24) \\ \sin(5\pi/24) & \cos(5\pi/24) \end{bmatrix} \text{ and } \mathbf{B} = \begin{bmatrix} \cos(3\pi/16) & \sin(3\pi/16) \\ -\sin(3\pi/16) & \cos(3\pi/16) \end{bmatrix}$$

find the matrix \mathbf{C} such that $\mathbf{A}^2 \mathbf{C} \mathbf{B}^2$ equals the identity matrix \mathbf{I} .

7. (\subset HW 9) If

$$\mathbf{A} = \begin{bmatrix} a & b & 0 & c \\ d & e & f & 0 \\ 0 & r & s & t \\ u & 0 & v & w \end{bmatrix} ,$$

find matrices ${\bf P}$ and ${\bf Q}$ such that

$$\mathbf{PAQ} = \begin{bmatrix} a & b-r & -s \end{bmatrix}$$