ENEE 222: 2/19 Class

Material: Lecture videos 7.1, 7.2

1. Which of the following transformations $\mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$, described in geometric terms, does the matrix

$$
\mathbf{A}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

represent?
A. Projection of a point on the horizontal $\left(x_{1}\right)$ axis.
B. Projection of a point on the vertical $\left(x_{2}\right)$ axis.
C. Counterclockwise rotation of a vector (from the origin to a point) by $\pi / 2$ radians.
D. Reflection of a point about the straight line which bisects the first and third quadrants.
2. Which (one or more) of the following relationships between $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$ and y represents a linear transformation $\mathbf{R}^{3} \rightarrow \mathbf{R}$?
A. $y=x_{1}+x_{2}+x_{3}$
B.

$$
y= \begin{cases}x_{1}, & x_{1} \geq 0 \\ 0, & x_{1}<0\end{cases}
$$

C. y equals the length of the vector \mathbf{x}.
D. y equals the cosine of the angle between the vector \mathbf{x} and the vector $(1,1,1)$.
3. If

$$
\mathbf{A}\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\mathbf{u} \quad \text { and } \quad \mathbf{A}\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\mathbf{v}
$$

then

$$
\mathbf{A}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=
$$

A. $\mathbf{u}+\mathbf{v}$
B. $\mathbf{u}-\mathbf{v}$
C. $2 \mathbf{u}+3 \mathbf{v}$
D. $\mathbf{u}+2 \mathbf{v}$
4. If

$$
\mathbf{A}\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
5
\end{array}\right] \quad \text { and } \quad \mathbf{A}\left[\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]
$$

which (one or more) of the following statements are correct?
A. The dimensions of \mathbf{A} cannot be determined based on the given information.
B. \mathbf{A} is a 3×3 matrix.
C. The second column of \mathbf{A} is given by $\left[\begin{array}{lll}1 & 1 & 2\end{array}\right]^{T}$.
D. The entries of the third column of \mathbf{A} cannot be determined based on the given information.
5. (HW $\mathbf{7} \subset \mathbf{i i})$ Express each of the three standard unit vectors, $\mathbf{e}^{(1)}, \mathbf{e}^{(2)}$ and $\mathbf{e}^{(3)}$, as a linear combination of

$$
\mathbf{x}=\left[\begin{array}{r}
6 \\
0 \\
-3
\end{array}\right], \quad \mathbf{y}=\left[\begin{array}{r}
3 \\
-3 \\
3
\end{array}\right] \quad \text { and } \quad \mathbf{z}=\left[\begin{array}{l}
3 \\
3 \\
0
\end{array}\right]
$$

6. (HW 7 iii) Express the vector $\mathbf{v}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]^{T}$ as the sum of two vectors, one parallel to $\mathbf{s}=$ $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]^{T}$ and another perpendicular to \mathbf{s}. Hence determine the reflection of \mathbf{v} about the plane through the origin which is normal to s.
7. (HW $8 \mathbf{i}$) If (r, s) is any point other than the origin on the Cartesian plane, determine the positive scaling factor α such that

$$
\alpha(r, s)=(\cos \theta, \sin \theta)
$$

for some (unique) angle θ. What geometric transformation does the matrix

$$
\mathbf{A}=\left[\begin{array}{rr}
r & -s \\
s & r
\end{array}\right]
$$

represent?

