ENEE 222: 2/19 Class

Material: Lecture videos 7.1, 7.2

1. Which of the following transformations $\mathbf{R}^2 \to \mathbf{R}^2$, described in geometric terms, does the matrix

$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

represent?

- A. Projection of a point on the horizontal (x_1) axis.
- B. Projection of a point on the vertical (x_2) axis.
- C. Counterclockwise rotation of a vector (from the origin to a point) by $\pi/2$ radians.
- D. Reflection of a point about the straight line which bisects the first and third quadrants.
- 2. Which (one or more) of the following relationships between $\mathbf{x} = (x_1, x_2, x_3)$ and y represents a linear transformation $\mathbf{R}^3 \to \mathbf{R}$?
 - A. $y = x_1 + x_2 + x_3$

В.

 $y = \begin{cases} x_1, & x_1 \ge 0 \\ 0, & x_1 < 0 \end{cases}$

- C. y equals the length of the vector \mathbf{x} .
- D. y equals the cosine of the angle between the vector \mathbf{x} and the vector (1, 1, 1).

3. If

$$\mathbf{A}\begin{bmatrix}2\\3\end{bmatrix} = \mathbf{u} \quad \text{and} \quad \mathbf{A}\begin{bmatrix}1\\2\end{bmatrix} = \mathbf{v} ,$$
$$\mathbf{A}\begin{bmatrix}1\\1\end{bmatrix} =$$

then

- A. $\mathbf{u} + \mathbf{v}$
- B. $\mathbf{u} \mathbf{v}$
- C. $2\mathbf{u} + 3\mathbf{v}$
- D. $\mathbf{u} + 2\mathbf{v}$

4. If

$$\mathbf{A}\begin{bmatrix}1\\2\\0\end{bmatrix} = \begin{bmatrix}2\\1\\5\end{bmatrix} \quad \text{and} \quad \mathbf{A}\begin{bmatrix}-1\\1\\0\end{bmatrix} = \begin{bmatrix}1\\2\\1\end{bmatrix},$$

which (one or more) of the following statements are correct?

- A. The dimensions of A cannot be determined based on the given information.
- B. A is a 3×3 matrix.
- C. The second column of **A** is given by $\begin{bmatrix} 1 & 1 & 2 \end{bmatrix}^T$.
- D. The entries of the third column of A cannot be determined based on the given information.
- 5. (HW 7 \subset ii) Express each of the three standard unit vectors, $\mathbf{e}^{(1)}$, $\mathbf{e}^{(2)}$ and $\mathbf{e}^{(3)}$, as a linear combination of

$$\mathbf{x} = \begin{bmatrix} 6\\0\\-3 \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} 3\\-3\\3 \end{bmatrix} \quad \text{and} \quad \mathbf{z} = \begin{bmatrix} 3\\3\\0 \end{bmatrix}$$

- 6. (HW 7 iii) Express the vector $\mathbf{v} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$ as the sum of two vectors, one parallel to $\mathbf{s} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$ and another perpendicular to \mathbf{s} . Hence determine the reflection of \mathbf{v} about the plane through the origin which is normal to \mathbf{s} .
- 7. (HW 8 i) If (r, s) is any point other than the origin on the Cartesian plane, determine the positive scaling factor α such that

$$\alpha(r, s) = (\cos \theta, \sin \theta)$$

for some (unique) angle θ . What geometric transformation does the matrix

$$\mathbf{A} = \left[\begin{array}{cc} r & -s \\ s & r \end{array} \right]$$

represent?