ENEE 222: 2/14 Class

Material: Lecture videos 5.2, 6.1, 6.2

1. If $x(t)=\cos (2 \pi f t+\phi)$, for which (one or more) of the following sampling rates f_{s} is the sample sequence obtained from $x(t)$ given by

$$
x[n]=\cos \left(\frac{2 \pi n}{5}+\phi\right) \quad \text { or } \quad x[n]=\cos \left(\frac{2 \pi n}{5}-\phi\right) ?
$$

(f is in Hertz and f_{s} in samples/second.)
A. $f_{s}=0.625 f$
B. $f_{s}=1.25 f$
C. $f_{s}=2.5 f$
D. $f_{s}=5 f$
2. Which (one or more) of the following frequencies (in Hz) becomes an alias of $f=30 \mathrm{~Hz}$ when the sampling rate equals $f_{s}=150$ samples per second?
A. 90
B. 120
C. 210
D. 270
3. Which (if any) of the following continuous-time signals $x(t)$ produce

$$
x\left(n T_{s}\right)=x[n]=7 \cos (0.4 \pi n)
$$

when $f_{s}=1 / T_{s}=150$ samples $/ \mathrm{sec}$?
A. $x(t)=3 \cos (60 \pi t)+4 \cos (540 \pi t)$
B. $x(t)=\cos (240 \pi t)+6 \cos (420 \pi t)$
C. $x(t)=2 \cos (180 \pi t)+5 \cos (360 \pi t)$
D. $x(t)=6 \cos (660 \pi t)+\cos (840 \pi t)$
4. (HW $\mathbf{6} \subset \mathbf{v}$) The two highest values of f_{s} (in samples/second) such that 72 Hz and 128 Hz are aliases of each other include
A. $f_{s}=56$
B. $f_{s}=100$
C. $f_{s}=200$
D. $f_{s}=400$
5. (HW $6 \sim$ iii) The discrete-time sinusoid $x[n]=A \cos (0.375 \pi n+\phi)$ was obtained by sampling a continuous-time sinusoid $x(t)$ at a rate of 640 samples per second. If it is known that the frequency of $x(t)$ is in the range 640 to 960 Hz , write an equation for $x(t)$.
6. (HW $6 \sim$ iv) Once again, $x[n]=A \cos (0.375 \pi n+\phi)$ was obtained by sampling $x(t)$ at a rate of 640 samples per second. If it is known that the frequency of $x(t)$ is in the range 320 to 640 Hz , write an equation for $x(t)$.
7. (HW 5 ii) Using phasors, express

$$
y(t)=x(t)+2 x(t-(\pi / 4 \Omega))
$$

as a single sinusoid, leaving your answer in terms of A, Ω and ϕ.

