ENEE 222: 2/12 Class

Material: Lecture videos 4.2, 5.1, 5.2

1. How many distinct values does the discrete-time sinusoid

$$
x[n]=\cos \left(\frac{\pi n}{4}\right)
$$

take as n ranges over all integers (positive and negative)?
A. Four
B. Five
C. Six
D. Eight
2. Shown below is a bar plot of the discrete-time sinusoid $\cos (\omega n+\phi)$. Which of the following values of ω is most consistent with this plot?

A. $\omega=4 \pi / 7$
B. $\omega=5 \pi / 7$
C. $\omega=4 \pi / 9$
D. $\omega=5 \pi / 9$
3. The continuous-time sinusoid $x(t)=3 \cos (\Omega t+\phi)$ is plotted below (solid line). The stem plot is the sequence of samples $x[n]=x\left(n T_{s}\right)$.

What is the relationship between the sampling period T_{s} and the period T of $x(t)$?
A. $T_{s}=T$
B. $T_{s}=T / 2$
C. $T_{s}=T / 7$
D. $T_{s}=2 T / 7$
4. Which (one or more) of the following equations describes the sample sequence $x[n]$ obtained in $\mathbf{3}$ above?
A. $x[n]=3 \cos \left(\frac{\pi n}{7}+\phi\right)$
B. $x[n]=3 \cos \left(\frac{2 \pi n}{7}+\phi\right)$
C. $x[n]=3 \cos \left(\frac{13 \pi n}{7}-\phi\right)$
D. $x[n]=3 \cos \left(\frac{12 \pi n}{7}-\phi\right)$
5. (HW $4 \supset$ iii) If the sequences $x[n]$ and $y[n]$ are periodic with periods N_{x} and N_{y} (respectively), explain why $z[n]=x[n]+y[n]$ is periodic with period equal to $\operatorname{LCM}\left(N_{x}, N_{y}\right)$. Is a shorter period also possible for $z[n]$?

In the remaining items, $x(t)=A \cos (\Omega t+\phi)$ and $x[n]=x\left(n T_{s}\right)$.
6. (HW 5 iii) Determine all values of T_{s} such that $x[n]$ is constant at all times n.
7. (HW $5 \subset \mathbf{i v}$) Determine the only value of T_{s} in $[0, T]$ such that $x[n]=A \cos ((\pi / 12) n+\phi)$.
8. (HW 5 $\subset \mathbf{v i}$) Determine the only value of T_{s} in $[0, T]$ such that $x[n]=A \cos ((5 \pi / 6) n-\phi)$. If time permits:
9. (HW 5 ii) Using phasors, express

$$
y(t)=x(t)+2 x(t-(\pi / 4 \Omega))
$$

as a single sinusoid, leaving your answer in terms of A, Ω and ϕ.

