Material: Lecture videos 4.2, 5.1, 5.2

1. How many distinct values does the discrete-time sinusoid

$$x[n] = \cos\left(\frac{\pi n}{4}\right)$$

take as n ranges over all integers (positive and negative)?

A. Four B. Five C. Six D. Eight

2. Shown below is a bar plot of the discrete-time sinusoid $\cos(\omega n + \phi)$. Which of the following values of ω is most consistent with this plot?

3. The continuous-time sinusoid $x(t) = 3\cos(\Omega t + \phi)$ is plotted below (solid line). The stem plot is the sequence of samples $x[n] = x(nT_s)$.

What is the relationship between the sampling period T_s and the period T of x(t)?

A. $T_s = T$ B. $T_s = T/2$ C. $T_s = T/7$ D. $T_s = 2T/7$

4. Which (one or more) of the following equations describes the sample sequence x[n] obtained in **3** above?

A.
$$x[n] = 3\cos\left(\frac{\pi n}{7} + \phi\right)$$

B. $x[n] = 3\cos\left(\frac{2\pi n}{7} + \phi\right)$
C. $x[n] = 3\cos\left(\frac{13\pi n}{7} - \phi\right)$
D. $x[n] = 3\cos\left(\frac{12\pi n}{7} - \phi\right)$

5. (HW 4 \supset iii) If the sequences x[n] and y[n] are periodic with periods N_x and N_y (respectively), explain why z[n] = x[n] + y[n] is periodic with period equal to $LCM(N_x, N_y)$. Is a shorter period also possible for z[n]?

In the remaining items, $x(t) = A\cos(\Omega t + \phi)$ and $x[n] = x(nT_s)$.

- 6. (HW 5 iii) Determine all values of T_s such that x[n] is constant at all times n.
- 7. (HW 5 \subset iv) Determine the only value of T_s in [0,T] such that $x[n] = A\cos((\pi/12)n + \phi)$.
- 8. (HW 5 \subset vi) Determine the only value of T_s in [0, T] such that $x[n] = A \cos((5\pi/6)n \phi)$. If time permits:
- 9. (HW 5 ii) Using phasors, express

$$y(t) = x(t) + 2x(t - (\pi/4\Omega))$$

as a single sinusoid, leaving your answer in terms of A, Ω and ϕ .