ENEE 222: 2/05 Class

Material: Lecture videos 2.2, 2.3, 3.1

1. Which (one or more) of the following expressions equals

$$
\frac{3+j}{j} ?
$$

A. $10 /(1+3 j)$
B. $1+3 j$
C. $1-3 j$
D. $-(1+j)(1+2 j)$
2. If $\angle z=3 \pi / 7$, for which (one or more) of the following choices of n is z^{n} real-valued?
A. $n=28$
B. $n=17$
C. $n=3$
D. $n=35$
3. Which of the following equations is satisfied by all six points z marked with \bullet below?

A. $z^{3}=8$
B. $z^{3}=8 j$
C. $z^{6}=64$
D. $z^{6}=-64$
4. (HW 2 iii) If $v=-3+j \sqrt{3}$, determine all the roots z of the equation

$$
z^{4}-v^{4}=0
$$

and plot them on the complex plane.
5. (HW 2 vi) Sketch the line or curve described by the equation

$$
\Re e\{z\}=\Im m\left\{2 z^{*}\right\}
$$

6. (HW $1 \mathbf{~ v i})$ Determine the only real values of a and b such that

$$
z^{2}+a z+b=0
$$

has $z=5-14 j$ as a root.
7. (HW $1 \subset \mathbf{i v}$) Express the modulus and angle of $v=z_{1}^{*} \cdot z_{2}^{-3}$ in terms of those (moduli and angles) of z_{1} and z_{2}.
8. (HW 1 vii) What complex number has angle equal to $\angle\left(z_{1}+z_{2}\right)-\angle z_{1}$? Compute that number and show that its angle is (indeed) a multiple of $\pi / 4$. (Easier approach than in the given hint.)

