Lecture 2, Part 3

Extensions of Complex Product

- \blacktriangleright n^{th} power of a complex number
- Inverse and complex conjugate
- Division of complex numbers

Computing z^n

$$z^n = (a+jb)^n$$

can be computed using the binomial theorem and $j^2 = -1$. In polar coordinates,

$$|z^n| = |z|^n$$
 and $\angle z^n = n(\angle z)$

This is faster, but not necessarily more accurate.

Example. If
$$z = 1 + 2j$$
, the exact result for z^{10} is
 $(1 + 2j)^{10} = 237 - j(3116)$

In polar coordinates,

$$|z| = \sqrt{5},$$
 $\angle z = \arctan(2) \approx 1.107$
 $|z^{10}| = 3125,$ $\angle z^{10} \approx 11.07$

With the given precision, the result is (rather) unsatisfactory:

$$z^{10} \approx 235.4 - j(3116.1)$$

Inverse of a Complex Number

The inverse z^{-1} of $z \neq 0$ is defined by the identity

$$z^{-1}z = 1$$

In polar coordinates, this is expressed as

$$|z^{-1}|\cdot|z|\,=\,1$$
 and $\angle z^{-1}+\angle z\,=\, \angle 1\,=\,0$ (rad)

In other words,

 $|z^{-1}| = |z|^{-1}$ and $\angle z^{-1} = -\angle z$

Complex Conjugate

The complex conjugate z^* is defined by

 $\Re e\{z^*\} = \Re e\{z\}$ and $\Im m\{z^*\} = -\Im m\{z\}$

Equivalently in polar coordinates,

 $|z^*| = |z|$ and $\angle z^* = -\angle z$

Note that z^* and z^{-1} are real multiples of each other, with

 $z^* = (|z|^2) \cdot z^{-1}$

Complex Division

$$\frac{z_1}{z_2} \stackrel{\text{def}}{=} z_1(z_2)^{-1}$$

Therefore in polar coordinates,

 $|z_1/z_2| = |z_1|/|z_2|$ and $\angle(z_1/z_2) = \angle z_1 - \angle z_2$

In Cartesian coordinates,

$$\frac{a+jb}{c+jd} = \frac{a+jb}{c+jd} \cdot \frac{c-jd}{c-jd}$$
$$= \frac{(a+jb)(c-jd)}{c^2+d^2}$$

(In effect, $zz^* = |z|^2$ is used to invert the denominator.) Complete by computing the product in the numerator.