Lecture 2, Part 3

Extensions of Complex Product

- $n^{\text {th }}$ power of a complex number
- Inverse and complex conjugate
- Division of complex numbers

Computing z^{n}

$$
z^{n}=(a+j b)^{n}
$$

can be computed using the binomial theorem and $j^{2}=-1$. In polar coordinates,

$$
\left|z^{n}\right|=|z|^{n} \quad \text { and } \quad \angle z^{n}=n(\angle z)
$$

This is faster, but not necessarily more accurate.
Example. If $z=1+2 j$, the exact result for z^{10} is

$$
(1+2 j)^{10}=237-j(3116)
$$

In polar coordinates,

$$
\begin{aligned}
|z| & =\sqrt{5}, & \angle z & =\arctan (2) \approx 1.107 \\
\left|z^{10}\right| & =3125, & \angle z^{10} & \approx 11.07
\end{aligned}
$$

With the given precision, the result is (rather) unsatisfactory:

$$
z^{10} \approx 235.4-j(3116.1)
$$

Inverse of a Complex Number

The inverse z^{-1} of $z \neq 0$ is defined by the identity

$$
z^{-1} z=1
$$

In polar coordinates, this is expressed as

$$
\left|z^{-1}\right| \cdot|z|=1 \quad \text { and } \quad \angle z^{-1}+\angle z=\angle 1=0 \quad(\mathrm{rad})
$$

In other words,

$$
\left|z^{-1}\right|=|z|^{-1} \quad \text { and } \quad \angle z^{-1}=-\angle z
$$

Complex Conjugate

The complex conjugate z^{*} is defined by

$$
\Re e\left\{z^{*}\right\}=\Re e\{z\} \quad \text { and } \quad \Im m\left\{z^{*}\right\}=-\Im m\{z\}
$$

Equivalently in polar coordinates,

$$
\left|z^{*}\right|=|z| \quad \text { and } \quad \angle z^{*}=-\angle z
$$

Note that z^{*} and z^{-1} are real multiples of each other, with

$$
z^{*}=\left(|z|^{2}\right) \cdot z^{-1}
$$

Complex Division

$$
\frac{z_{1}}{z_{2}} \stackrel{\text { def }}{=} z_{1}\left(z_{2}\right)^{-1}
$$

Therefore in polar coordinates,

$$
\left|z_{1} / z_{2}\right|=\left|z_{1}\right| /\left|z_{2}\right| \quad \text { and } \quad \angle\left(z_{1} / z_{2}\right)=\angle z_{1}-\angle z_{2}
$$

In Cartesian coordinates,

$$
\begin{aligned}
\frac{a+j b}{c+j d} & =\frac{a+j b}{c+j d} \cdot \frac{c-j d}{c-j d} \\
& =\frac{(a+j b)(c-j d)}{c^{2}+d^{2}}
\end{aligned}
$$

(In effect, $z z^{*}=|z|^{2}$ is used to invert the denominator.)
Complete by computing the product in the numerator.

