Lecture 2, Part 2

Product of Complex Numbers

- Definition using polar coordinates
- Computation using Cartesian coordinates

The Complex Product $z_{1} z_{2}$

Completely different from product of two vectors (dot or cross).
$z_{1} z_{2}$ is also a complex number
Two equivalent definitions, in terms of polar and Cartesian coordinates.

In polar coordinates, the product $z_{1} z_{2}$ is defined by

$$
\left|z_{1} z_{2}\right|=\left|z_{1}\right| \cdot\left|z_{2}\right| \quad \text { and } \quad \angle z_{1} z_{2}=\angle z_{1}+\angle z_{2}
$$

- Clearly, $z_{1} z_{2}=z_{2} z_{1}$
- If $z_{1}=a+j 0$, then $z_{1} z_{2}=a z_{2}$ (i.e., scaling by real a):

$$
\left|z_{1} z_{2}\right|=|a| \cdot\left|z_{2}\right| \quad \text { and } \quad \angle z_{1} z_{2}=\angle z_{2}+(0 \text { or } \pi)
$$

$$
(0 \text { if } a>0 ; \text { or } \pi \text { if } a<0)
$$

Example

$$
\begin{array}{lll}
z_{1}=1-j & \Rightarrow & \left|z_{1}\right|=\sqrt{2},
\end{array} \quad \angle z_{1}=-\pi / 4, ~<z_{2}=2 \pi / 3
$$

Thus

$$
\left|z_{1} z_{2}\right|=2 \sqrt{2}, \quad \angle z_{1} z_{2}=-\frac{\pi}{4}+\frac{2 \pi}{3}=\frac{5 \pi}{12}
$$

In Cartesian form:

$$
z_{1} z_{2}=2 \sqrt{2} \cdot(\cos (5 \pi / 12)+j \sin (5 \pi / 12))
$$

Multiplication by a Number on the Unit Circle

If $|w|=1$ and z is arbitrary, then

$$
|w z|=|z| \quad \text { and } \quad \angle w z=\angle w+\angle z
$$

Conclusion: Multiplying z by a complex number w on the unit circle is equivalent to rotating the vector of z by $\angle w$.

Distributive Property

If $|w|=1$, then

$$
w\left(z_{1}+z_{2}\right)=w z_{1}+w z_{2}
$$

Any $z_{0} \in \mathbb{C}$ can be written as $a w$, where $a=\left|z_{0}\right|>0$. Scale above figures by a to obtain

$$
z_{0}\left(z_{1}+z_{2}\right)=z_{0} z_{1}+z_{0} z_{2}
$$

for any z_{0}, z_{1} and z_{2} in \mathbb{C}.

Product in Cartesian Coordinates (and $j^{2}=-1$)

$$
\left|j^{2}\right|=1 \cdot 1=1 \quad \text { and } \quad \angle j^{2}=2(\pi / 2)=\pi
$$

Thus $j^{2}=-1$.
The distributive property can now be used to compute $z_{1} z_{2}$ directly in Cartesian form. For example:

$$
\begin{aligned}
(3+4 j)(2-5 j) & =3(2-5 j)+4 j(2-5 j) \\
& =6-15 j+8 j-20 j^{2} \\
& =26-7 j
\end{aligned}
$$

