Lecture 2, Part 1

Lines on the Complex Plane

- Circle of given center and radius
- Perpendicular bisector of a line segment

The Equation $|z|=c$

Recall: $|z|$ is the distance of z from the origin.
Thus the equation

$$
|z|=c
$$

represents a circle of radius c centered at the origin. Special case: unit circle, with $c=1$.

The Equation $\left|z-z_{0}\right|=c$

(Here, z_{0} is a fixed point on the complex plane; z is variable.)

$\left|z-z_{0}\right|=$ distance of z from z_{0}. Thus the equation

$$
\left|z-z_{0}\right|=c
$$

represents a circle of radius c centered at z_{0}.
Exercise: Set $z=x+j y, \quad z_{0}=a+j b$ and take $|\cdot|^{2}$

$$
(x-a)^{2}+(y-b)^{2}=c^{2}
$$

The Equation $\left|z-z_{1}\right|=\left|z-z_{2}\right|$

(Here, z_{1} and z_{2} are both fixed; z is variable.)

Point z is equidistant to z_{1} and z_{2}.
The locus of all such points is the perpendicular bisector of the line segment joining z_{1} and z_{2}.

Exercise: Write an equivalent equation in terms of x and y

- either using the midpoint $\left(z_{1}+z_{2}\right) / 2$ and the appropriate slope $(=-1 /($ slope of segment) $)$
- or squaring moduli: $\left|z-z_{1}\right|^{2}=\left|z-z_{2}\right|^{2}$

