Lecture 2, Part 1

Lines on the Complex Plane

- Circle of given center and radius
- Perpendicular bisector of a line segment

The Equation |z| = c

Recall: |z| is the distance of z from the origin. Thus the equation

$$|z| = c$$

represents a circle of radius c centered at the origin.

Special case: unit circle, with c = 1.

The Equation $|z - z_0| = c$

(Here, z_0 is a fixed point on the complex plane; z is variable.)

 $|z-z_0| =$ distance of z from z_0 . Thus the equation

$$|z - z_0| = c$$

represents a circle of radius c centered at z_0 .

Exercise: Set z = x + jy, $z_0 = a + jb$ and take $|\cdot|^2 \rightarrow (x-a)^2 + (y-b)^2 = c^2$

The Equation $|z - z_1| = |z - z_2|$

(Here, z_1 and z_2 are both fixed; z is variable.)

Point z is equidistant to z_1 and z_2 .

The locus of all such points is the perpendicular bisector of the line segment joining z_1 and z_2 .

Exercise: Write an equivalent equation in terms of x and y

- either using the midpoint $(z_1 + z_2)/2$ and the appropriate slope (= -1/(slope of segment))
- or squaring moduli: $|z z_1|^2 = |z z_2|^2$