Lecture 1

Introduction to Complex Numbers

- Cartesian and polar forms
- Scaling and addition
- ► The imaginary unit *j*

Cartesian and Polar Forms

A complex number z is represented by a point on the Cartesian plane.

Cartesian coordinates:

- $x = \Re e\{z\}$: real part of z
- $y = \Im m\{z\}$: imaginary part of z

Polar coordinates:

- r = |z|: modulus (or magnitude) of z
- $\theta = \angle z$: angle of z

Coordinate Conversions

Polar to Cartesian:

$$x = r\cos\theta, \qquad y = r\sin\theta$$

Cartesian to polar:

$$r = \sqrt{x^2 + y^2}$$

$$\theta = \arctan\left(\frac{y}{x}\right) + \begin{cases} 0 & \text{if } x \ge 0\\ \pi & \text{if } x < 0 \end{cases}$$

- \blacktriangleright π radians equals 180^0
- ▶ θ and $\theta + 2\pi$ (rad) are the same angle

• If $|z_1| = 2$ and $\angle z_1 = -\pi/3$ (same as $5\pi/3$), then $\Re e\{z_1\} = 2(1/2) = 1$, $\Im m\{z_1\} = 2(-\sqrt{3}/2) = -\sqrt{3}$

• If $\Re e\{z_2\} = -3$ and $\Im m\{z_2\} = 2$, then

$$|z_2| = \sqrt{(-3)^2 + 2^2} = 3.606$$

 $\angle z_2 = \arctan(-2/3) + \pi = 2.553$ rad

Scaling and Addition

Treat each z as a vector (from origin to z) and apply usual rules.

► Scaling by $\alpha \in \mathbb{R}$: $\Re e\{\alpha z\} = \alpha \cdot \Re e\{z\}$, $\Im m\{\alpha z\} = \alpha \cdot \Im m\{z\}$

Addition:

$$\begin{aligned} \Re e\{z_1 + z_2\} &= \ \Re e\{z_1\} + \Re e\{z_2\} \\ \Im m\{z_1 + z_2\} &= \ \Im m\{z_1\} + \Im m\{z_2\} \end{aligned}$$

(Parallelogram law)

The Imaginary Unit j

For any z on the complex plane \mathbb{C} , we have the Cartesian form

$$z = (x, y) = (x, 0) + (0, y) = x(1, 0) + y(0, 1) = x + jy$$

where

• j = (0, 1), i.e., unit vector along the imaginary axis

• unit vector (1,0) along the real axis is implied (scaled by x)