Lecture 1

Introduction to Complex Numbers

- Cartesian and polar forms
- Scaling and addition
- The imaginary unit j

Cartesian and Polar Forms

A complex number z is represented by a point on the Cartesian plane.

Cartesian coordinates:

- $x=\Re e\{z\}:$ real part of z
- $y=\Im m\{z\}$: imaginary part of z

Polar coordinates:

- $r=|z|$: modulus (or magnitude) of z
- $\theta=\angle z$: angle of z

Coordinate Conversions

Polar to Cartesian:

$$
x=r \cos \theta, \quad y=r \sin \theta
$$

Cartesian to polar:

$$
\begin{gathered}
r=\sqrt{x^{2}+y^{2}} \\
\theta=\arctan \left(\frac{y}{x}\right)+ \begin{cases}0 & \text { if } x \geq 0 \\
\pi & \text { if } x<0\end{cases}
\end{gathered}
$$

- π radians equals 180°
- θ and $\theta+2 \pi(\mathrm{rad})$ are the same angle

Examples

- If $\left|z_{1}\right|=2$ and $\angle z_{1}=-\pi / 3$ (same as $5 \pi / 3$), then

$$
\Re e\left\{z_{1}\right\}=2(1 / 2)=1, \quad \Im m\left\{z_{1}\right\}=2(-\sqrt{3} / 2)=-\sqrt{3}
$$

- If $\Re e\left\{z_{2}\right\}=-3$ and $\Im m\left\{z_{2}\right\}=2$, then

$$
\begin{aligned}
& \left|z_{2}\right|=\sqrt{(-3)^{2}+2^{2}}=3.606 \\
& \angle z_{2}=\arctan (-2 / 3)+\pi=2.553 \mathrm{rad}
\end{aligned}
$$

Scaling and Addition

Treat each z as a vector (from origin to z) and apply usual rules.

- Scaling by $\alpha \in \mathbb{R}$:

$$
\Re e\{\alpha z\}=\alpha \cdot \Re e\{z\}, \quad \Im m\{\alpha z\}=\alpha \cdot \Im m\{z\}
$$

- Addition:

$$
\begin{aligned}
\Re e\left\{z_{1}+z_{2}\right\} & =\Re e\left\{z_{1}\right\}+\Re e\left\{z_{2}\right\} \\
\Im m\left\{z_{1}+z_{2}\right\} & =\Im m\left\{z_{1}\right\}+\Im m\left\{z_{2}\right\}
\end{aligned}
$$

(Parallelogram law)

The Imaginary Unit j

For any z on the complex plane \mathbb{C}, we have the Cartesian form

$$
\begin{aligned}
z & =(x, y) \\
& =(x, 0)+(0, y) \\
& =x(1,0)+y(0,1) \\
& =x+j y
\end{aligned}
$$

where

- $j=(0,1)$, i.e., unit vector along the imaginary axis
- unit vector $(1,0)$ along the real axis is implied (scaled by x)

