Τ.,	Δ	ST	Γ.	N	Δ	N	1	F.	•
	-				/−N	ıv		٠,	-

First Name:

Cnod	_
CTEAC	$\boldsymbol{\leftarrow}$

ENEE 222 02* FALL 2018 FINAL EXAMINATION

- Closed book, no notes, no calculators.
- Show your work clearly, justifying your answers where appropriate.
- Enter your name (LAST followed by first) on all sheets.
- Do not detach any sheets. Use this sheet for rough work.
- Limit your answer to any single problem to both sides of the same sheet. If you need additional sheets, please inform the proctor. *Do not* continue on the opposite (left) page, or any other page.

$\begin{array}{lll} \underline{Periodic\ Time\text{-}Domain\ Signal} & \underline{Fourier\ Series\ Coefficients} \\ x(t) & = \sum_{k=-\infty}^{\infty} X_k e^{jk\Omega_0 t} & X_k & = \frac{1}{T_0} \int_0^{T_0} x(t) e^{-jk\Omega_0 t} dt \\ x^*(t) & X_{-k} & \\ x(-t) & X_{-k} & \\ x(t-D) & e^{-jk\Omega_0 D} X_k & \\ (L \in \mathbf{Z}) & x(t) e^{jL\Omega_0 t} & X_{k-L} & \\ (\beta > 0) & x(\beta t) & X_k & \end{array}$

Common Trigonometric Values

$$\cos(\pi/6) = \sin(\pi/3) = \sqrt{3}/2;$$
 $\cos(\pi/4) = \sin(\pi/4) = \sqrt{2}/2;$ $\cos(\pi/3) = \sin(\pi/6) = 1/2$

LAST NAME:	First Name:	
PROBLEM 1 (15 pts.)		Grade:
Let $x(t) = 2.1 + 3.7\cos(28\pi)$	$(t - 1.4) + 5.3\cos(42\pi t + 0.5) + 1.9\cos(42\pi t + 0.5)$	$(70\pi t - 2.3)$,
where t is in seconds.		
(i) (3 pts.) Determine the fundament	al period T_0 of $x(t)$.	
(ii) (5 pts.) Define (i.e., give the number possible length, such that	nmerical values of) a scalar c and a vec	ctor b having the smallest
<pre>c = b = [z = c*ifft(b,300) x = real(z)].'</pre>	; ; ;	
generates a vector ${\tt x}$ consisting of 300 s	samples of $x(t)$ uniformly spaced in $[0, T_0]$	$_{0}).$
(iii) (4 pts.) If ${\tt b}$ and ${\tt c}$ are as specified	ed in (ii) above, the code	
<pre>b_new = [1.0 ; conj(b)] z = c*ifft(b_new, 150) s = real(z)</pre>	; % CONJ(.) : complex conju ; ;	ıgate
cutoff frequency $f_c = 25$ Hz. Write an	equation for the output signal $y(t)$.	

LAST NAME:

First Name:

PROBLEM 2 (15 pts.)

Grade:

The signal r(t) shown below is periodic with period $T_0 = 8$ and has complex Fourier series expansion

$$r(t) = \sum_{k=-\infty}^{\infty} R_k e^{jk\Omega_0 t} ,$$

- (i) (1 pt.) Determine the value of R_0 .
- (ii) (5 pts.) Write an equation (in terms of r(t)) for the real-valued signal x(t) which is periodic with the same fundamental period as r(t) and whose Fourier series coefficients are given by

$$X_0 = 1$$
 and $X_k = 2j \cdot R_k \sin(k\pi/2)$ $(k \neq 0)$

- (iii) (2 pts.) Sketch the signal x(t) obtained in (ii) in the space provided (middle graph). Make sure to label the vertical axis.
- (iv) (3 pts.) Express the real-valued periodic signal y(t) (bottom graph) in terms of r(t). The curved sections of the graph are sinusoidal.
- (v) (4 pts.) Express each Y_k in terms of R_k 's.

(Additional space for Problem 2 only)

.......

$Leave\ blank \rightarrow$		
LAST NAME:	First Name:	
PROBLEM 3 (15 pts.) Consider the filter with impulse resp	ponse	Grade:
	$[n-1] + 4\delta[n-2] - 4\delta[n-3] + \delta[n-4] - 3$	$3\delta[n-5]$
(i) (5 pts.) Express the filter's free	quency response $H(e^{j\omega})$ in the form	
	$H(e^{j\omega}) = e^{j\alpha(\omega)}F(\omega) ,$	
where $\alpha(\omega)$ and $F(\omega)$ are real-value	d.	
(ii) (4 pts.) If the input to the filt	er is the sequence	
	$x[n] = 1 + 2^{-n}$ (all n),	
determine the output $y[n]$.		
, , , , , , , , , , , , , , , , , , , ,	rent input sequence $x[n]$, which is periodic fundamental) period L_y of the output sequence	

......

LAST NAME:

First Name:

PROBLEM 4 (15 pts.)

Grade:

Consider a filter whose frequency response for $\omega \in (-\pi, \pi]$ is as shown below.

The filter accepts the input sequence

$$x[n] = \cos\left(\frac{\pi n}{7} - \frac{3\pi}{5}\right) + 3\cos\left(\frac{\pi n}{2}\right)$$

and produces the output sequence v[n].

- (i) (7 pts.) Determine v[n].
- (ii) (4 pts.) Are x[n] and v[n] periodic, and if so, what is the fundamental period in each case? Explain.
- (iii) (4 pts.) The sequence v[n] is the input to a second filter with impulse response

$$h_2[n] = \delta[n] - \delta[n-1]$$

Determine the output $y[n]$ of that (second) filter, simplifying your answer as much as possible.	
	• •

LAST NAME:	F	irst Name:			
PROBLEM 5 (15 pts Consider the following M			Grade:		
h = [3 -4 0 s = [1 2 3 H = fft(h,9) S = fft(s,9) C = H.*S c = ifft(C)	4 -3].';				
(i) (8 pts.) Determine the vector c. (ii) (7 pts.) Without performing a convolution, determine the vector y obtained by the following code:					
b = [-3					