ENEE 222: 5/02 Class

Material: Lecture videos 22.1, 22.2, 22.3

1. The frequency response of a FIR filter at frequency $\omega=\omega_{0}$ is given by

$$
H\left(e^{j \omega_{0}}\right)=\sqrt{3}-j
$$

If the filter input sequence is

$$
x[n]=\cos \omega_{0} n, \quad n \in \mathbb{Z}
$$

which of the following equations describes the output for all time indices n ?
A. $y[n]=\sqrt{3} e^{-j \omega_{0} n}$
B. $y[n]=2 \cos \left(\omega_{0} n-\pi / 6\right)$
C. $y[n]=2 \cos \left(\omega_{0} n-\pi / 3\right)$
D. $y[n]=2 \cos \left(\omega_{0} n+\pi / 3\right)$
2. The system function $H(z)$ of a FIR filter is such that

$$
H(-1+j \sqrt{3})=\frac{\sqrt{2}+j \sqrt{2}}{4}
$$

If the filter input sequence is

$$
x[n]=2^{n} \cdot \cos \left(\frac{2 \pi n}{3}\right), \quad n \in \mathbb{Z}
$$

which of the following equations describes the output for all time indices n ?
A. $y[n]=2^{n} \cdot \cos (2 \pi n / 3+\pi / 4)$
B. $y[n]=2^{n} \cdot \cos (2 \pi n / 3-\pi / 4)$
C. $y[n]=2^{n-1} \cdot \cos (2 \pi n / 3+\pi / 4)$
D. $y[n]=2^{n-1} \cdot \cos (2 \pi n / 3-\pi / 4)$
3. Consider a FIR filter of order $M=60$. Instead of the coefficient vector $\left(b_{0}, \ldots, b_{60}\right)$, you are given the values of the filter's frequency response $H\left(e^{j \omega}\right)$ at all frequencies ω which are multiples of $\pi / 16$.

Based of the given information, for which (one or more) of the following input sequences $x[\cdot]$ is it possible to determine the output sequence $y[\cdot]$?
A. $\quad x[n]=\cos (3 \pi n / 8)$ for all n
B. $\quad x[\cdot]$ is an arbitrary periodic sequence of period $L=4$
C. $\quad x[\cdot]$ is an arbitrary periodic sequence of period $L=10$
D. $\quad x[\cdot]$ is an arbitrary periodic sequence of period $L=32$
4. Two FIR filters with input-output relationships

$$
y[n]=x[n]-x[n-1]+x[n-2]-x[n-3]+x[n-4]
$$

and

$$
y[n]=x[n]+x[n-1]
$$

are connected in series (cascade). The resulting input-output relationship is
A. $y[n]=2 x[n]+x[n-2]-x[n-3]+x[n-4]$
B. $y[n]=x[n]-x[n-1]+x[n-2]-x[n-3]+x[n-4]-x[n-5]$
C. $y[n]=x[n]-x[n-5]$
D. $y[n]=x[n]+x[n-5]$
5. (HW $26 \subset \mathbf{i})$ Consider the FIR filter with the following input-output relationship (note the missing coefficient):

$$
y[n]=x[n]+3 x[n-1]+3 x[n-3]+x[n-4]
$$

Determine the filter output when the input is given by $x[n]=1+3^{-n}$ at all times n.
6. (HW $26 \subset \mathbf{i}$) For the same filter as in $\mathbf{5}$ above, determine the output when the input is given by

$$
x[n]=2^{-n} \cdot \cos (n \pi / 6) \quad(n \in \mathbb{Z})
$$

