ENEE 222 EXAM 2: SAMPLE PROBLEMS

Calculators will not be allowed.
The following formulas will be given on the exam sheet:

$$
\begin{aligned}
& \text { Time Domain } \\
& \text { Frequency Domain } \\
& x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j(2 \pi / N) k n} \longleftrightarrow X[k]=\sum_{n=0}^{N-1} x[n] e^{-j(2 \pi / N) k n} \\
& \mathbf{x}=\frac{1}{N} \mathbf{V} \mathbf{X} \longleftrightarrow \mathbf{X}=\mathbf{W} \mathbf{x} \\
& \alpha \mathbf{x}+\beta \mathbf{y} \longleftrightarrow \alpha \mathbf{X}+\beta \mathbf{Y} \\
& \mathbf{x}^{*} \longleftrightarrow \mathbf{R} \mathbf{X}^{*} \\
& \mathbf{R x} \longleftrightarrow \mathbf{R X} \\
& \mathbf{P}^{m} \mathbf{x} \longleftrightarrow \mathbf{F}^{-m} \mathbf{X} \\
& \mathbf{F}^{m} \mathbf{x} \longleftrightarrow \mathbf{P}^{m} \mathbf{X} \\
& \mathbf{X} \longleftrightarrow \mathbf{R}^{m} \\
& \mathbf{x} \diamond \mathbf{y} \longleftrightarrow \frac{1}{N}(\mathbf{X} \circledast \mathbf{Y})[k]=\frac{1}{N} \mathbf{X}^{T} \mathbf{P}^{k} \mathbf{R Y} \\
&(\mathbf{x} \circledast \mathbf{y})[n]=\mathbf{x}^{T} \mathbf{P}^{n} \mathbf{R} \mathbf{y} \longleftrightarrow \mathbf{X} \diamond \mathbf{Y}
\end{aligned}
$$

PROBLEM 1

The continuous-time real-valued signal $s(t)$ is a sum of two real-valued sinusoids of frequency no higher than 25 Hz , plus a DC offset (i.e., a constant). It is sampled at times $t=n T_{s}$, where $n=0, \ldots, 19$ and $T_{s}=0.02$ seconds. The amplitude and phase spectra of the sampled signal are shown in the figure below.

Use the information given above to write an equation for $s(t)$, valid for all $t \in \mathbf{R}$.

PROBLEM 2

The time-domain signal

$$
\mathbf{s}=\left[\begin{array}{llllllll}
a & b & c & d & 0 & 0 & 0 & 0
\end{array}\right]^{T}
$$

has DFT given by

$$
\mathbf{S}=\left[\begin{array}{llllllll}
4 & 4-j(2-\sqrt{2}) & 2 & 4+j(2+\sqrt{2}) & 8 & 4-j(2+\sqrt{2}) & 2 & 4+j(2-\sqrt{2})
\end{array}\right]^{T}
$$

(i) Compute the numerical value of $a-b+c-d$.
(ii) Compute the DFT \mathbf{X} of the time-domain signal

$$
\mathbf{x}=\left[\begin{array}{llllllll}
a & b & c & d & a & b & c & d
\end{array}\right]^{T}
$$

(iii) Compute the DFT Y of the time-domain signal

$$
\mathbf{y}=\left[\begin{array}{llllllll}
a & b & c & d & -a & -b & -c & -d
\end{array}\right]^{T}
$$

PROBLEM 3

The time-domain signal

$$
\mathbf{s}=\left[\begin{array}{llllll}
a & b & c & d & e & f
\end{array}\right]^{T}
$$

has DFT given by

$$
\mathbf{S}=\left[\begin{array}{llllll}
S_{0} & S_{1} & S_{2} & S_{3} & S_{4} & S_{5}
\end{array}\right]^{T}
$$

(i) Determine (in terms of a, \ldots, f) the time-domain signal \mathbf{x} whose DFT is given by

$$
\mathbf{X}=\left[\begin{array}{llllll}
S_{0}-S_{3} & S_{1}-S_{4} & S_{2}-S_{5} & S_{3}-S_{0} & S_{4}-S_{1} & S_{5}-S_{2}
\end{array}\right]^{T}
$$

(ii) Determine (in terms of a, \ldots, f) the time-domain signal \mathbf{y} whose DFT is given by

$$
Y[k]=S_{k} \cos (2 \pi k / 3), \quad k=0, \ldots, 5
$$

PROBLEM 4

The time-domain signals

$$
\mathbf{x}=\left[\begin{array}{llll}
1 & 2 & 0 & 1
\end{array}\right]^{T} \quad \text { and } \quad \mathbf{y}=\left[\begin{array}{llll}
3 & -1 & 4 & -2
\end{array}\right]^{T}
$$

have DFT's given by

$$
\mathbf{X}=\left[\begin{array}{llll}
A & B & C & D
\end{array}\right]^{T} \quad \text { and } \quad \mathbf{Y}=\left[\begin{array}{llll}
E & F & G & H
\end{array}\right]^{T}
$$

(i) Compute the time-domain signal s whose DFT is given by

$$
\mathbf{S}=\left[\begin{array}{llll}
A E & B H & C G & D F
\end{array}\right]^{T}
$$

(ii) Let \mathbf{u} be the time-domain signal defined by the circular convolution

$$
\mathbf{u}=\left[\begin{array}{llll}
A & B & C & D
\end{array}\right]^{T} \circledast\left[\begin{array}{llll}
3 & -1 & 4 & -2
\end{array}\right]^{T}
$$

Write an expression for the DFT \mathbf{U} of \mathbf{u} in terms of E, F, G and H.

PROBLEM 5

The time-domain signal \mathbf{x} shown below takes three distinct values (zero being one of them) and has DFT X. For simplicity, let $X[k]=X_{k}$.

(i) For which values of k (if any) does X_{k} equal 0 ?
(ii) For which pairs (k, k^{\prime}) (if any) does X_{k} equal $X_{k^{\prime}}$?
(iii) Express the DFT S of the time-domain signal s shown below (left) in terms of X_{k} 's.
(iv) Express the DFT \mathbf{Y} of the time-domain signal \mathbf{y} shown below (right) in terms of X_{k} 's.

PROBLEM 6

The DFT of the signal

$$
\mathbf{x}=\left[\begin{array}{llllllll}
a & b & c & d & 0 & 0 & 0 & 0
\end{array}\right]^{T}
$$

is given by

$$
\mathbf{X}=\left[\begin{array}{llllllll}
X_{0} & X_{1} & X_{2} & X_{3} & X_{4} & X_{5} & X_{6} & X_{7}
\end{array}\right]^{T}
$$

(i) Determine the DFT \mathbf{S} of the time-domain signal

$$
\mathbf{s}=\left[\begin{array}{llll}
c & d & a & b
\end{array}\right]^{T}
$$

(ii) Compute the value of $\cos (n \pi / 2)$ for $n=0, \ldots, 7$.
(iii) Using your answer to part (ii) above, determine the time-domain signal y whose DFT is given by

$$
\mathbf{Y}=\left[\begin{array}{llllllll}
X_{0} & 0 & -X_{2} & 0 & X_{4} & 0 & -X_{6} & 0
\end{array}\right]^{T}
$$

PROBLEM 7

A continuous-time signal is given by

$$
x(t)=A_{1} \cos \left(2 \pi f_{1} t+\phi_{1}\right)+A_{2} \cos \left(2 \pi f_{2} t+\phi_{2}\right)+z(t)
$$

where $z(t)$ is noise. The signal $x(t)$ is sampled every 2.0 ms for a total of 50 samples. The figure shows the graph of the magnitude (or amplitude) spectrum of the 50 -point signal as a function of the frequency index $k=0, \ldots, 49$.

Based on the given graph, what are your estimates of f_{1} and f_{2} ?
(You may assume that no aliasing has occurred, i.e., the sampling rate of $500 \mathrm{samples} / \mathrm{sec}$ is no less than twice each of f_{1} and f_{2}.)

PROBLEM 8

The continuous-time signal

$$
x(t)=-4+5 \cos (700 \pi t+0.2)+2 \cos (450 \pi t-0.8)
$$

is sampled every $T_{s}=0.001$ seconds starting at $t=0$. The first $N=40$ samples are stored in the vector \mathbf{x}.
(i) Verify that the frequencies of the sinusoidal components of $x(t)$ become (after sampling) Fourier frequencies for the N-point vector \mathbf{x}.
(ii) Compute the nonzero entries in the DFT X of \mathbf{x}. Give your answers in either Cartesian or polar form, clearly showing the corresponding indices k.
(iii) Sketch the amplitude and phase spectra $|X[k]|$ and $\angle X[k]$ as functions of the frequency index $k=0, \ldots, 39$.

PROBLEM 9

Let

$$
\mathbf{A}=\left[\begin{array}{rrrr}
-3 & 1 & 3 & 9 \\
9 & -3 & 1 & 3 \\
3 & 9 & -3 & 1 \\
1 & 3 & 9 & -3
\end{array}\right]
$$

(i) Carefully compute $\mathbf{A}^{T} \mathbf{A}$. What special property do the columns of \mathbf{A} have?
(ii) The vector $\mathbf{b}=\left[\begin{array}{lll}2-1 & 8 & -9\end{array}\right]^{T}$ can be written as a linear combination of three columns of \mathbf{A}. Determine that linear combination (i.e., its coefficients) without solving a 4×4 system.

PROBLEM 10

Consider the matrix of Fourier sinusoids

$$
\mathbf{V}=\left[\begin{array}{llll}
\mathbf{v}^{(0)} & \mathbf{v}^{(1)} & \mathbf{v}^{(2)} & \mathbf{v}^{(3)}
\end{array}\right]=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & j & -1 & -j \\
1 & -1 & 1 & -1 \\
1 & -j & -1 & j
\end{array}\right]
$$

and the vector $\mathbf{s}=\left[\begin{array}{llll}6 & 2 & -1 & 4\end{array}\right]^{T}$.
(i) Determine the coefficient vector \mathbf{c} such that $\mathbf{s}=\mathbf{V c}$.
(ii) Display the vector $\hat{\mathbf{s}}$, which is the least-squares approximation of \mathbf{s} in terms of $\mathbf{v}^{(1)}$ and $\mathbf{v}^{(3)}$ only.
(iii) Consider the vector

$$
\mathbf{x}=\mathbf{s}+\left[\begin{array}{llll}
z+u & z-u & z+u & z-u
\end{array}\right]^{T}
$$

where z and u are arbitrary complex constants. Let $\hat{\mathbf{x}}$ be its least-squares approximation in terms of $\mathbf{v}^{(1)}$ and $\mathbf{v}^{(3)}$. Explain why $\hat{\mathbf{x}}=\hat{\mathbf{s}}$, where $\hat{\mathbf{s}}$ was defined in part (ii).

