ENEE 222: FINAL EXAM REVIEW

2. All signals shown below are periodic and have complex Fourier series expansions of the form

$$
s(t)=\sum_{k=-\infty}^{\infty} S_{k} e^{j k \Omega_{0} t}
$$

where Ω_{0} is the fundamental angular frequency.

(i) Assuming that t is in seconds, what is the value of Ω_{0} ?
(ii) Evaluate R_{0}.
(iii) Express each X_{k} in terms of R_{k} 's.
(iv) Express each Y_{k} in terms of R_{k} 's. Simplify your answer as much as possible.
3. All signals shown below are periodic with complex Fourier series as in Problem 2 above. The curved segments of $y(t)$ are sinusoidal.

(i) Using the fact that $R_{k}=\sin (k \alpha \pi) /(k \pi)$, obtain an expression for each X_{k}. You need not simplify your answer.
(ii) Express each Y_{k} in terms of X_{k} 's.
4. A FIR filter has impulse response

$$
h[n]=b_{0} \delta[n]+b_{1} \delta[n-1]+b_{2} \delta[n-2]+b_{3} \delta[n-3]+b_{4} \delta[n-4]
$$

Its magnitude (amplitude) response is given by

$$
\left|H\left(e^{j \omega}\right)\right|=|\cos 2 \omega-2 \cos \omega|
$$

and its phase response is piecewise linear.
(i) Assuming that $b_{0}>0$, determine the values of b_{0}, \ldots, b_{4}.
(ii) Determine the response of the filter to the input

$$
x[n]=\left(\frac{2}{3}\right)^{n}, \quad n \in \mathbf{Z}
$$

(iii) The phase response $\angle H\left(e^{j \omega}\right)$ of the filter has exactly one discontinuity (jump) in the frequency interval $[0, \pi]$. At what value of ω does the discontinuity occur? Solve for ω algebraically (not graphically), using the identity $\cos 2 \omega=2 \cos ^{2} \omega-1$.
5. Consider the signal sequence \mathbf{x} defined by

$$
x[n]=3 \cos \left(\frac{\pi n}{3}+\frac{2 \pi}{5}\right)+2 \cos (2.75 n-1.24), \quad n \in \mathbf{Z}
$$

(i) If \mathbf{x} is the input to a filter with magnitude (amplitude) and phase responses as shown in figure below, determine the resulting output sequence \mathbf{y}.
(ii) Is the output \mathbf{y} periodic, and if so, what is its period?

7. Two FIR filters whose impulse response sequences $\mathbf{h}^{(1)}$ and $\mathbf{h}^{(2)}$ are given by

$$
h^{(1)}[n]=\delta[n]+\delta[n-1]+\delta[n-2]+\delta[n-3]+\delta[n-4]
$$

and

$$
h^{(2)}[n]=\delta[n]-\delta[n-1]
$$

are connected in series (cascade) to form a single filter with impulse response \mathbf{h}.
(i) Using z-transforms or convolution, determine $h[n]$ for every n.
(ii) I claim that if the input to the cascade is a periodic sequence \mathbf{x} of period $N=5$, then the output sequence \mathbf{y} is constant in value, i.e., $y[n]=c$ for all $n \in \mathbf{Z}$; and that, furthermore, the value c is the same for all periodic sequences of period $N=5$.
Is my claim correct? If it is correct, what is the value of c ? Explain.

