04/12 REVIEW

PROBLEM 1

The continuous-time real-valued signal $s(t)$ is a sum of two real-valued sinusoids of frequency no higher than 25 Hz , plus a DC offset (i.e., a constant). It is sampled at times $t=n T_{s}$, where $n=0, \ldots, 19$ and $T_{s}=0.02$ seconds. The amplitude and phase spectra of the sampled signal are shown in the figure below.

Use the information given above to write an equation for $s(t)$, valid for all $t \in \mathbf{R}$.

PROBLEM 2

The time-domain signal

$$
\mathbf{s}=\left[\begin{array}{llllllll}
a & b & c & d & 0 & 0 & 0 & 0
\end{array}\right]^{T}
$$

has DFT given by

$$
\mathbf{S}=\left[\begin{array}{lllllll}
4 & 4-j(2-\sqrt{2}) & 2 & 4+j(2+\sqrt{2}) & 8 & 4-j(2+\sqrt{2}) & 2
\end{array} \quad 4+j(2-\sqrt{2})\right]^{T}
$$

(i) Compute the numerical value of $a-b+c-d$.
(ii) Compute the DFT \mathbf{X} of the time-domain signal

$$
\mathbf{x}=\left[\begin{array}{llllllll}
a & b & c & d & a & b & c & d
\end{array}\right]^{T}
$$

(iii) Compute the DFT Y of the time-domain signal

$$
\mathbf{y}=\left[\begin{array}{llllllll}
a & b & c & d & -a & -b & -c & -d
\end{array}\right]^{T}
$$

PROBLEM 4

The time-domain signals

$$
\mathbf{x}=\left[\begin{array}{llll}
1 & 2 & 0 & 1
\end{array}\right]^{T} \quad \text { and } \quad \mathbf{y}=\left[\begin{array}{llll}
3 & -1 & 4 & -2
\end{array}\right]^{T}
$$

have DFT's given by

$$
\mathbf{X}=\left[\begin{array}{llll}
A & B & C & D
\end{array}\right]^{T} \quad \text { and } \quad \mathbf{Y}=\left[\begin{array}{llll}
E & F & G & H
\end{array}\right]^{T}
$$

(i) Compute the time-domain signal \mathbf{s} whose DFT is given by

$$
\mathbf{S}=\left[\begin{array}{llll}
A E & B H & C G & D F
\end{array}\right]^{T}
$$

(ii) Let \mathbf{u} be the time-domain signal defined by the circular convolution

$$
\mathbf{u}=\left[\begin{array}{llll}
A & B & C & D
\end{array}\right]^{T} \circledast\left[\begin{array}{llll}
3 & -1 & 4 & -2
\end{array}\right]^{T}
$$

Write an expression for the DFT \mathbf{U} of \mathbf{u} in terms of E, F, G and H.

PROBLEM 5

The time-domain signal \mathbf{x} shown below takes three distinct values (zero being one of them) and has DFT X. For simplicity, let $X[k]=X_{k}$.

(i) For which values of k (if any) does X_{k} equal 0 ?
(ii) For which pairs $\left(k, k^{\prime}\right)$ (if any) does X_{k} equal $X_{k^{\prime}}$?
(iii) Express the DFT \mathbf{S} of the time-domain signal \mathbf{s} shown below (left) in terms of X_{k} 's.
(iv) Express the DFT \mathbf{Y} of the time-domain signal \mathbf{y} shown below (right) in terms of X_{k} 's.

PROBLEM 6

The DFT of the signal

$$
\mathbf{x}=\left[\begin{array}{llllllll}
a & b & c & d & 0 & 0 & 0 & 0
\end{array}\right]^{T}
$$

is given by

$$
\mathbf{X}=\left[\begin{array}{llllllll}
X_{0} & X_{1} & X_{2} & X_{3} & X_{4} & X_{5} & X_{6} & X_{7}
\end{array}\right]^{T}
$$

(i) Determine the DFT \mathbf{S} of the time-domain signal

$$
\mathbf{s}=\left[\begin{array}{llll}
c & d & a & b
\end{array}\right]^{T}
$$

(ii) Compute the value of $\cos (n \pi / 2)$ for $n=0, \ldots, 7$.
(iii) Using your answer to part (ii) above, determine the time-domain signal \mathbf{y} whose DFT is given by

$$
\mathbf{Y}=\left[\begin{array}{llllllll}
X_{0} & 0 & -X_{2} & 0 & X_{4} & 0 & -X_{6} & 0
\end{array}\right]^{T}
$$

