EXAM 1 REVIEW

PROBLEM 1

Let $z=x+j y$ and $w=e^{j \theta}$, where x, y and θ are real-valued.
(i) Express $z+z^{-1}$ in Cartesian form.
(ii) Express $w^{3}+w^{-3}$ as a real-valued function of θ.
(iii) Express $\left|z^{*}-w\right|^{2}$ as a sum of real-valued terms involving x, y and θ.
(iv) Express z / w in Cartesian form.

PROBLEM 6

(i) On the complex (z) plane, sketch the lines given by the following equations:

- $|z-1|=|z-2 j|$
- $|z-1-j|=\sqrt{2}$
(ii) The sinusoid

$$
x(t)=A \cos (\Omega t+\pi / 4)+B \sin (\Omega t+\pi / 3)
$$

can be expressed as

$$
x(t)=C \cos (\Omega t+\phi)
$$

for suitable C and ϕ. Find an equation for C^{2} in terms of A and B. (You do not need to solve for ϕ).

$$
(\cos (\pi / 6)=\sin (\pi / 3)=\sqrt{3} / 2 ; \quad \cos (\pi / 4)=\sin (\pi / 4)=\sqrt{2} / 2 ; \quad \cos (\pi / 3)=\sin (\pi / 6)=1 / 2)
$$

PROBLEM 2

A continuous-time signal $x(t)$ is a sum of two sinusoids whose frequencies are known to lie in the range $500 \mathrm{~Hz}-550 \mathrm{~Hz}$. It is sampled at a rate of 100 samples/second starting at $t=0$. The resulting samples satisfy the equation

$$
x[n]=3.4 \cos (0.3 \pi n+1.7)+2.1 \cos (0.8 \pi n+2.5)
$$

(i) Find an equation for $x(t)$.
(ii) How would your answer to (i) differ if the frequencies of the two components of $x(t)$ were in the range $550 \mathrm{~Hz}-600 \mathrm{~Hz}$ instead?

PROBLEM 5

The real-valued sinusoid $x(t)$ has period 2.0 seconds and amplitude 2.0 units. It is plotted below (left) for t in $[0.0,2.0]$.

(i) Calculate the total amount of time, over one period, for which $x(t) \geq 1.0$.
(ii) If $x(0)=-\sqrt{2}$, determine the exact time t in the above graph such that $x(t)=2.0$.
(iii) The sinusoid $x(t)$ is sampled every T_{s} seconds to produce the discrete-time signal

$$
x[n]=x\left(n T_{s}\right)
$$

shown above, on the right, for $n=0, \ldots, 8$. Determine all possible values of T_{s}.

PROBLEM 7

A real-valued sinusoid $x(t)$ has the following features:

- It is rising (i.e., its value is increasing) at time $t=0$.
- Its first peak after $t=0$ is observed at $t=0.1 \mathrm{sec}$.
- The value of that maximum equals 2.0 volts.
- The first zero value of $x(t)$ is observed at $t=0.4 \mathrm{sec}$.
(i) What is the period of $x(t)$?
(ii) What is the value of $x(0)$?
(iii) Write an equation for $x(t)$.
(iv) Suppose we sample the sinusoid every $T_{s}=0.1$ seconds, starting at time $t=0$. Will the value $x(0)$ occur again (as a sample) after time 0 ? If so, when will it first reoccur?

