Lecture 24

Lecture 24

- Relationship between linear and circular convolution

Lecture 24

- Relationship between linear and circular convolution
- Linear convolution and polynomial multiplication

Lecture 24

- Relationship between linear and circular convolution
- Linear convolution and polynomial multiplication
- Block convolution

Lecture 24

- Relationship between linear and circular convolution
- Linear convolution and polynomial multiplication
- Block convolution; in-class assignment

Lecture 24

- Relationship between linear and circular convolution
- Linear convolution and polynomial multiplication
- Block convolution; in-class assignment
- Ideal filters

Lecture 24

- Relationship between linear and circular convolution
- Linear convolution and polynomial multiplication
- Block convolution; in-class assignment
- Ideal filters
- Practical FIR filters

Linear Convolution via Circular Convolution

If \mathbf{b} and \mathbf{s} have lengths K and L (resp.),

Linear Convolution via Circular Convolution

If \mathbf{b} and \mathbf{s} have lengths K and L (resp.), then

$$
\mathbf{b} * \mathbf{s}=\left[\mathbf{b} ; \mathbf{0}_{L-1}\right] \circledast\left[\mathbf{s} ; \mathbf{0}_{K-1}\right]
$$

Linear Convolution via Circular Convolution

If \mathbf{b} and \mathbf{s} have lengths K and L (resp.), then

Linear Convolution via Circular Convolution

If \mathbf{b} and \mathbf{s} have lengths K and L (resp.), then

Convolution and Polynomial Multiplication

Convolution and Polynomial Multiplication

Convolution and Polynomial Multiplication

- But also:

$$
H(z)=H_{1}(z) H_{2}(z)
$$

Convolution and Polynomial Multiplication

- But also:

$$
H(z)=H_{1}(z) H_{2}(z)
$$

- Example from last class:

$$
\left[\begin{array}{cccc}
2 & -1 & 1 & -2
\end{array}\right]^{T} *\left[\begin{array}{llll}
1 & 2 & 3 & -1
\end{array}\right]^{T}
$$

Convolution and Polynomial Multiplication

- But also:

$$
H(z)=H_{1}(z) H_{2}(z)
$$

- Example from last class:

$$
\left[\begin{array}{cccc}
2 & -1 & 1 & -2
\end{array}\right]^{T} *\left[\begin{array}{llll}
1 & 2 & 3 & -1
\end{array}\right]^{T}
$$

can be also computed via

$$
\left(2-z^{-1}+z^{-2}-2 z^{-3}\right)\left(1+2 z^{-1}+3 z^{-2}-z^{-3}\right)
$$

In-Class Assignment

In-Class Assignment

An FIR filter acts on the input sequence given by

$$
x[0: 5]=\left[\begin{array}{llllll}
1 & -3 & 5 & -2 & 6 & 2
\end{array}\right]^{T}
$$

$$
(x[n]=0 \text { for } n<0 \text { and } n>5)
$$

In-Class Assignment

An FIR filter acts on the input sequence given by

$$
x[0: 5]=\left[\begin{array}{llllll}
1 & -3 & 5 & -2 & 6 & 2
\end{array}\right]^{T}
$$

$(x[n]=0$ for $n<0$ and $n>5)$
to produce the output sequence given by

In-Class Assignment

An FIR filter acts on the input sequence given by

$$
x[0: 5]=\left[\begin{array}{llllll}
1 & -3 & 5 & -2 & 6 & 2
\end{array}\right]^{T}
$$

$(x[n]=0$ for $n<0$ and $n>5)$
to produce the output sequence given by
$y[0: 10]=\left[\begin{array}{lllllllllll}2 & -3 & 0 & 10 & 23 & -27 & 61 & -51 & 54 & 14 & -2\end{array}\right]^{T}$ and $y[n]=0$ for $n<0$ and $n>10$.

In-Class Assignment

An FIR filter acts on the input sequence given by

$$
x[0: 5]=\left[\begin{array}{llllll}
1 & -3 & 5 & -2 & 6 & 2
\end{array}\right]^{T}
$$

$(x[n]=0$ for $n<0$ and $n>5)$
to produce the output sequence given by
$y[0: 10]=\left[\begin{array}{lllllllllll}2 & -3 & 0 & 10 & 23 & -27 & 61 & -51 & 54 & 14 & -2\end{array}\right]^{T}$ and $y[n]=0$ for $n<0$ and $n>10$.

Without performing a convolution

In-Class Assignment

An FIR filter acts on the input sequence given by

$$
x[0: 5]=\left[\begin{array}{llllll}
1 & -3 & 5 & -2 & 6 & 2
\end{array}\right]^{T}
$$

$(x[n]=0$ for $n<0$ and $n>5)$
to produce the output sequence given by
$y[0: 10]=\left[\begin{array}{lllllllllll}2 & -3 & 0 & 10 & 23 & -27 & 61 & -51 & 54 & 14 & -2\end{array}\right]^{T}$ and $y[n]=0$ for $n<0$ and $n>10$.

Without performing a convolution, determine the response $v[\cdot]$ of the filter to the input sequence $u[\cdot]$

In-Class Assignment

An FIR filter acts on the input sequence given by

$$
x[0: 5]=\left[\begin{array}{llllll}
1 & -3 & 5 & -2 & 6 & 2
\end{array}\right]^{T}
$$

$(x[n]=0$ for $n<0$ and $n>5)$
to produce the output sequence given by
$y[0: 10]=\left[\begin{array}{lllllllllll}2 & -3 & 0 & 10 & 23 & -27 & 61 & -51 & 54 & 14 & -2\end{array}\right]^{T}$
and $y[n]=0$ for $n<0$ and $n>10$.
Without performing a convolution, determine the response $v[\cdot]$ of the filter to the input sequence $u[\cdot]$ which equals zero except for
$u[0: 9]$

In-Class Assignment

An FIR filter acts on the input sequence given by

$$
x[0: 5]=\left[\begin{array}{llllll}
1 & -3 & 5 & -2 & 6 & 2
\end{array}\right]^{T}
$$

$(x[n]=0$ for $n<0$ and $n>5)$
to produce the output sequence given by

$$
y[0: 10]=\left[\begin{array}{lllllllllll}
2 & -3 & 0 & 10 & 23 & -27 & 61 & -51 & 54 & 14 & -2
\end{array}\right]^{T}
$$

and $y[n]=0$ for $n<0$ and $n>10$.
Without performing a convolution, determine the response $v[\cdot]$ of the filter to the input sequence $u[\cdot]$ which equals zero except for
$u[0: 9]=\left[\begin{array}{llllllllll}2 & -6 & 10 & -4 & 11 & 7 & -5 & 2 & -6 & -2\end{array}\right]^{T}$

Ideal Filter in Frequency Domain

Ideal Filter in Frequency Domain

Ideal Filter in Frequency Domain

Cannot be realized in practice

Ideal Filter in Frequency Domain

Cannot be realized in practice (it is inherently noncausal)

Practical Filter Characteristics

Practical Filter Characteristics

Practical Filter Characteristics

- Transition band $\left[\omega_{p}, \omega_{s}\right.$]

Practical Filter Characteristics

- Transition band $\left[\omega_{p}, \omega_{s}\right.$]
- Passband ripple δ

Practical Filter Characteristics

- Transition band $\left[\omega_{p}, \omega_{s}\right.$]
- Passband ripple δ
- Stopband attenuation $1 / \epsilon$

