Overview

Overview

- Certain types of input sequences

Overview

- Certain types of input sequences, namely

Overview

- Certain types of input sequences, namely

Overview

- Certain types of input sequences, namely
- complex exponentials

Overview

- Certain types of input sequences, namely
- complex exponentials with ratio z

Overview

- Certain types of input sequences, namely
- complex exponentials with ratio z

Overview

- Certain types of input sequences, namely
- complex exponentials with ratio z
- products

Overview

- Certain types of input sequences, namely
- complex exponentials with ratio z
- products of a real exponential

Overview

- Certain types of input sequences, namely
- complex exponentials with ratio z
- products of a real exponential (ratio r)

Overview

- Certain types of input sequences, namely
- complex exponentials with ratio z
- products of a real exponential (ratio r) and a real sinusoid

Overview

- Certain types of input sequences, namely
- complex exponentials with ratio z
- products of a real exponential (ratio r) and a real sinusoid (frequency ω)

Overview

- Certain types of input sequences, namely
- complex exponentials with ratio z
- products of a real exponential (ratio r) and a real sinusoid (frequency ω)

Overview

- Certain types of input sequences, namely
- complex exponentials with ratio z
- products of a real exponential (ratio r) and a real sinusoid (frequency ω)
- periodic sequences

Overview

- Certain types of input sequences, namely
- complex exponentials with ratio z
- products of a real exponential (ratio r) and a real sinusoid (frequency ω)
- periodic sequences with period L

Overview

- Certain types of input sequences, namely
- complex exponentials with ratio z
- products of a real exponential (ratio r) and a real sinusoid (frequency ω)
- periodic sequences with period L produce output sequences of the same type

Overview

- Certain types of input sequences, namely
- complex exponentials with ratio z
- products of a real exponential (ratio r) and a real sinusoid (frequency ω)
- periodic sequences with period L produce output sequences of the same type, with above parameters preserved.

Overview

- Certain types of input sequences, namely
- complex exponentials with ratio z
- products of a real exponential (ratio r) and a real sinusoid (frequency ω)
- periodic sequences with period L produce output sequences of the same type, with above parameters preserved.

Next:

Overview

- Certain types of input sequences, namely
- complex exponentials with ratio z
- products of a real exponential (ratio r) and a real sinusoid (frequency ω)
- periodic sequences with period L produce output sequences of the same type, with above parameters preserved.

Next: consider inputs of

Overview

- Certain types of input sequences, namely
- complex exponentials with ratio z
- products of a real exponential (ratio r) and a real sinusoid (frequency ω)
- periodic sequences with period L produce output sequences of the same type, with above parameters preserved.

Next: consider inputs of finite duration

Overview

- Certain types of input sequences, namely
- complex exponentials with ratio z
- products of a real exponential (ratio r) and a real sinusoid (frequency ω)
- periodic sequences with period L produce output sequences of the same type, with above parameters preserved.

Next: consider inputs of finite duration, i.e.,

Overview

- Certain types of input sequences, namely
- complex exponentials with ratio z
- products of a real exponential (ratio r) and a real sinusoid (frequency ω)
- periodic sequences with period L produce output sequences of the same type, with above parameters preserved.

Next: consider inputs of finite duration, i.e.,

$$
x[n]=0
$$

Overview

- Certain types of input sequences, namely
- complex exponentials with ratio z
- products of a real exponential (ratio r) and a real sinusoid (frequency ω)
- periodic sequences with period L produce output sequences of the same type, with above parameters preserved.

Next: consider inputs of finite duration, i.e.,

$$
x[n]=0 \quad \text { for } n<n_{\text {begin }}
$$

Overview

- Certain types of input sequences, namely
- complex exponentials with ratio z
- products of a real exponential (ratio r) and a real sinusoid (frequency ω)
- periodic sequences with period L produce output sequences of the same type, with above parameters preserved.

Next: consider inputs of finite duration, i.e.,

$$
x[n]=0 \quad \text { for } n<n_{\text {begin }} \text { and } n>n_{\text {end }}
$$

Overview

- Certain types of input sequences, namely
- complex exponentials with ratio z
- products of a real exponential (ratio r) and a real sinusoid (frequency ω)
- periodic sequences with period L produce output sequences of the same type, with above parameters preserved.

Next: consider inputs of finite duration, i.e.,

$$
x[n]=0 \quad \text { for } n<n_{\text {begin }} \text { and } n>n_{\text {end }}
$$

Resulting output $y[\cdot]$

Overview

- Certain types of input sequences, namely
- complex exponentials with ratio z
- products of a real exponential (ratio r) and a real sinusoid (frequency ω)
- periodic sequences with period L produce output sequences of the same type, with above parameters preserved.

Next: consider inputs of finite duration, i.e.,

$$
x[n]=0 \quad \text { for } n<n_{\text {begin }} \text { and } n>n_{\text {end }}
$$

Resulting output $y[\cdot]$ will also have finite duration.

Overview

- Certain types of input sequences, namely
- complex exponentials with ratio z
- products of a real exponential (ratio r) and a real sinusoid (frequency ω)
- periodic sequences with period L produce output sequences of the same type, with above parameters preserved.

Next: consider inputs of finite duration, i.e.,

$$
x[n]=0 \quad \text { for } n<n_{\text {begin }} \text { and } n>n_{\text {end }}
$$

Resulting output $y[\cdot]$ will also have finite duration.

Finite-Duration Input

Finite-Duration Input

Consider the general FIR filter

Finite-Duration Input

Consider the general FIR filter of order M

Finite-Duration Input

Consider the general FIR filter of order M, with coefficient vector

$$
\mathbf{b}=[\quad]^{T}
$$

Finite-Duration Input

Consider the general FIR filter of order M, with coefficient vector

$$
\mathbf{b}=\left[\begin{array}{llll}
b_{0} & b_{1} & \ldots & b_{M}
\end{array}\right]^{T}
$$

Finite-Duration Input

Consider the general FIR filter of order M, with coefficient vector

$$
\mathbf{b}=\left[\begin{array}{llll}
b_{0} & b_{1} & \ldots & b_{M}
\end{array}\right]^{T}
$$

where

Finite-Duration Input

Consider the general FIR filter of order M, with coefficient vector

$$
\mathbf{b}=\left[\begin{array}{llll}
b_{0} & b_{1} & \ldots & b_{M}
\end{array}\right]^{T}
$$

where $b_{0} b_{M} \neq 0$.

Finite-Duration Input

Consider the general FIR filter of order M, with coefficient vector

$$
\mathbf{b}=\left[\begin{array}{llll}
b_{0} & b_{1} & \ldots & b_{M}
\end{array}\right]^{T}
$$

where $b_{0} b_{M} \neq 0$.
Input sequence $x[\cdot]$

Finite-Duration Input

Consider the general FIR filter of order M, with coefficient vector

$$
\mathbf{b}=\left[\begin{array}{llll}
b_{0} & b_{1} & \ldots & b_{M}
\end{array}\right]^{T}
$$

where $b_{0} b_{M} \neq 0$.
Input sequence $x[\cdot]$ has finite duration.

Finite-Duration Input

Consider the general FIR filter of order M, with coefficient vector

$$
\mathbf{b}=\left[\begin{array}{llll}
b_{0} & b_{1} & \ldots & b_{M}
\end{array}\right]^{T}
$$

where $b_{0} b_{M} \neq 0$.
Input sequence $x[\cdot]$ has finite duration. Its nontrivial samples

Finite-Duration Input

Consider the general FIR filter of order M, with coefficient vector

$$
\mathbf{b}=\left[\begin{array}{llll}
b_{0} & b_{1} & \ldots & b_{M}
\end{array}\right]^{T}
$$

where $b_{0} b_{M} \neq 0$.
Input sequence $x[\cdot]$ has finite duration. Its nontrivial samples are $x[0: L-1]$

Finite-Duration Input

Consider the general FIR filter of order M, with coefficient vector

$$
\mathbf{b}=\left[\begin{array}{llll}
b_{0} & b_{1} & \ldots & b_{M}
\end{array}\right]^{T}
$$

where $b_{0} b_{M} \neq 0$.
Input sequence $x[\cdot]$ has finite duration. Its nontrivial samples are $x[0: L-1]$

Finite-Duration Input

Consider the general FIR filter of order M, with coefficient vector

$$
\mathbf{b}=\left[\begin{array}{llll}
b_{0} & b_{1} & \ldots & b_{M}
\end{array}\right]^{T}
$$

where $b_{0} b_{M} \neq 0$.
Input sequence $x[\cdot]$ has finite duration. Its nontrivial samples are $x[0: L-1]$, where $x[0] \cdot x[L-1] \neq 0$.

$$
x[n]
$$

Finite-Duration Input

Consider the general FIR filter of order M, with coefficient vector

$$
\mathbf{b}=\left[\begin{array}{llll}
b_{0} & b_{1} & \ldots & b_{M}
\end{array}\right]^{T}
$$

where $b_{0} b_{M} \neq 0$.
Input sequence $x[\cdot]$ has finite duration. Its nontrivial samples are $x[0: L-1]$, where $x[0] \cdot x[L-1] \neq 0$.

$$
x[n]
$$

Finite-Duration Input

Consider the general FIR filter of order M, with coefficient vector

$$
\mathbf{b}=\left[\begin{array}{llll}
b_{0} & b_{1} & \ldots & b_{M}
\end{array}\right]^{T}
$$

where $b_{0} b_{M} \neq 0$.
Input sequence $x[\cdot]$ has finite duration. Its nontrivial samples are $x[0: L-1]$, where $x[0] \cdot x[L-1] \neq 0$.

$$
y[n]=0
$$

Finite-Duration Input

Consider the general FIR filter of order M, with coefficient vector

$$
\mathbf{b}=\left[\begin{array}{llll}
b_{0} & b_{1} & \ldots & b_{M}
\end{array}\right]^{T}
$$

where $b_{0} b_{M} \neq 0$.
Input sequence $x[\cdot]$ has finite duration. Its nontrivial samples are $x[0: L-1]$, where $x[0] \cdot x[L-1] \neq 0$.

$$
y[n]=0 \quad \text { for } \quad n<0
$$

Finite-Duration Input

Consider the general FIR filter of order M, with coefficient vector

$$
\mathbf{b}=\left[\begin{array}{llll}
b_{0} & b_{1} & \ldots & b_{M}
\end{array}\right]^{T}
$$

where $b_{0} b_{M} \neq 0$.
Input sequence $x[\cdot]$ has finite duration. Its nontrivial samples are $x[0: L-1]$, where $x[0] \cdot x[L-1] \neq 0$.

Finite-Duration Input

Consider the general FIR filter of order M, with coefficient vector

$$
\mathbf{b}=\left[\begin{array}{llll}
b_{0} & b_{1} & \ldots & b_{M}
\end{array}\right]^{T}
$$

where $b_{0} b_{M} \neq 0$.
Input sequence $x[\cdot]$ has finite duration. Its nontrivial samples are $x[0: L-1]$, where $x[0] \cdot x[L-1] \neq 0$.

$$
x[n]
$$

$$
y[n]=0 \quad \text { for } \quad n<0
$$

Finite-Duration Input

Consider the general FIR filter of order M, with coefficient vector

$$
\mathbf{b}=\left[\begin{array}{llll}
b_{0} & b_{1} & \ldots & b_{M}
\end{array}\right]^{T}
$$

where $b_{0} b_{M} \neq 0$.
Input sequence $x[\cdot]$ has finite duration. Its nontrivial samples are $x[0: L-1]$, where $x[0] \cdot x[L-1] \neq 0$.

$$
x[n]
$$

$$
y[n]=0 \quad \text { for } \quad n<0
$$

Finite-Duration Input

Consider the general FIR filter of order M, with coefficient vector

$$
\mathbf{b}=\left[\begin{array}{llll}
b_{0} & b_{1} & \ldots & b_{M}
\end{array}\right]^{T}
$$

where $b_{0} b_{M} \neq 0$.
Input sequence $x[\cdot]$ has finite duration. Its nontrivial samples are $x[0: L-1]$, where $x[0] \cdot x[L-1] \neq 0$.

$$
x[n]
$$

$$
y[n]=0 \quad \text { for } \quad n<0
$$

Finite-Duration Input

Consider the general FIR filter of order M, with coefficient vector

$$
\mathbf{b}=\left[\begin{array}{llll}
b_{0} & b_{1} & \ldots & b_{M}
\end{array}\right]^{T}
$$

where $b_{0} b_{M} \neq 0$.
Input sequence $x[\cdot]$ has finite duration. Its nontrivial samples are $x[0: L-1]$, where $x[0] \cdot x[L-1] \neq 0$.

Finite-Duration Input

Consider the general FIR filter of order M, with coefficient vector

$$
\mathbf{b}=\left[\begin{array}{llll}
b_{0} & b_{1} & \ldots & b_{M}
\end{array}\right]^{T}
$$

where $b_{0} b_{M} \neq 0$.
Input sequence $x[\cdot]$ has finite duration. Its nontrivial samples are $x[0: L-1]$, where $x[0] \cdot x[L-1] \neq 0$.

Finite-Duration Input

Consider the general FIR filter of order M, with coefficient vector

$$
\mathbf{b}=\left[\begin{array}{llll}
b_{0} & b_{1} & \ldots & b_{M}
\end{array}\right]^{T}
$$

where $b_{0} b_{M} \neq 0$.
Input sequence $x[\cdot]$ has finite duration. Its nontrivial samples are $x[0: L-1]$, where $x[0] \cdot x[L-1] \neq 0$.

Finite-Duration Input

Consider the general FIR filter of order M, with coefficient vector

$$
\mathbf{b}=\left[\begin{array}{llll}
b_{0} & b_{1} & \ldots & b_{M}
\end{array}\right]^{T}
$$

where $b_{0} b_{M} \neq 0$.
Input sequence $x[\cdot]$ has finite duration. Its nontrivial samples are $x[0: L-1]$, where $x[0] \cdot x[L-1] \neq 0$.

$$
x[n]
$$

$$
y[n]=0 \quad \text { for } \quad n<0
$$

Finite-Duration Input

Consider the general FIR filter of order M, with coefficient vector

$$
\mathbf{b}=\left[\begin{array}{llll}
b_{0} & b_{1} & \ldots & b_{M}
\end{array}\right]^{T}
$$

where $b_{0} b_{M} \neq 0$.
Input sequence $x[\cdot]$ has finite duration. Its nontrivial samples are $x[0: L-1]$, where $x[0] \cdot x[L-1] \neq 0$.

Finite-Duration Input

Consider the general FIR filter of order M, with coefficient vector

$$
\mathbf{b}=\left[\begin{array}{llll}
b_{0} & b_{1} & \ldots & b_{M}
\end{array}\right]^{T}
$$

where $b_{0} b_{M} \neq 0$.
Input sequence $x[\cdot]$ has finite duration. Its nontrivial samples are $x[0: L-1]$, where $x[0] \cdot x[L-1] \neq 0$.

Finite-Duration Input

Consider the general FIR filter of order M, with coefficient vector

$$
\mathbf{b}=\left[\begin{array}{llll}
b_{0} & b_{1} & \ldots & b_{M}
\end{array}\right]^{T}
$$

where $b_{0} b_{M} \neq 0$.
Input sequence $x[\cdot]$ has finite duration. Its nontrivial samples are $x[0: L-1]$, where $x[0] \cdot x[L-1] \neq 0$.

Finite-Duration Input

Consider the general FIR filter of order M, with coefficient vector

$$
\mathbf{b}=\left[\begin{array}{llll}
b_{0} & b_{1} & \ldots & b_{M}
\end{array}\right]^{T}
$$

where $b_{0} b_{M} \neq 0$.
Input sequence $x[\cdot]$ has finite duration. Its nontrivial samples are $x[0: L-1]$, where $x[0] \cdot x[L-1] \neq 0$.

Finite-Duration Input

Consider the general FIR filter of order M, with coefficient vector

$$
\mathbf{b}=\left[\begin{array}{llll}
b_{0} & b_{1} & \ldots & b_{M}
\end{array}\right]^{T}
$$

where $b_{0} b_{M} \neq 0$.
Input sequence $x[\cdot]$ has finite duration. Its nontrivial samples are $x[0: L-1]$, where $x[0] \cdot x[L-1] \neq 0$.

Finite-Duration Input

Consider the general FIR filter of order M, with coefficient vector

$$
\mathbf{b}=\left[\begin{array}{llll}
b_{0} & b_{1} & \ldots & b_{M}
\end{array}\right]^{T}
$$

where $b_{0} b_{M} \neq 0$.
Input sequence $x[\cdot]$ has finite duration. Its nontrivial samples are $x[0: L-1]$, where $x[0] \cdot x[L-1] \neq 0$.

Finite-Duration Input

Consider the general FIR filter of order M, with coefficient vector

$$
\mathbf{b}=\left[\begin{array}{llll}
b_{0} & b_{1} & \ldots & b_{M}
\end{array}\right]^{T}
$$

where $b_{0} b_{M} \neq 0$.
Input sequence $x[\cdot]$ has finite duration. Its nontrivial samples are $x[0: L-1]$, where $x[0] \cdot x[L-1] \neq 0$.

Finite-Duration Input

Consider the general FIR filter of order M, with coefficient vector

$$
\mathbf{b}=\left[\begin{array}{llll}
b_{0} & b_{1} & \ldots & b_{M}
\end{array}\right]^{T}
$$

where $b_{0} b_{M} \neq 0$.
Input sequence $x[\cdot]$ has finite duration. Its nontrivial samples are $x[0: L-1]$, where $x[0] \cdot x[L-1] \neq 0$.

Finite-Duration Input

Consider the general FIR filter of order M, with coefficient vector

$$
\mathbf{b}=\left[\begin{array}{llll}
b_{0} & b_{1} & \ldots & b_{M}
\end{array}\right]^{T}
$$

where $b_{0} b_{M} \neq 0$.
Input sequence $x[\cdot]$ has finite duration. Its nontrivial samples are $x[0: L-1]$, where $x[0] \cdot x[L-1] \neq 0$.

Finite-Duration Input

Consider the general FIR filter of order M, with coefficient vector

$$
\mathbf{b}=\left[\begin{array}{llll}
b_{0} & b_{1} & \ldots & b_{M}
\end{array}\right]^{T}
$$

where $b_{0} b_{M} \neq 0$.
Input sequence $x[\cdot]$ has finite duration. Its nontrivial samples are $x[0: L-1]$, where $x[0] \cdot x[L-1] \neq 0$.

Finite-Duration Input

Consider the general FIR filter of order M, with coefficient vector

$$
\mathbf{b}=\left[\begin{array}{llll}
b_{0} & b_{1} & \ldots & b_{M}
\end{array}\right]^{T}
$$

where $b_{0} b_{M} \neq 0$.
Input sequence $x[\cdot]$ has finite duration. Its nontrivial samples are $x[0: L-1]$, where $x[0] \cdot x[L-1] \neq 0$.

Finite-Duration Input

Consider the general FIR filter of order M, with coefficient vector

$$
\mathbf{b}=\left[\begin{array}{llll}
b_{0} & b_{1} & \ldots & b_{M}
\end{array}\right]^{T}
$$

where $b_{0} b_{M} \neq 0$.
Input sequence $x[\cdot]$ has finite duration. Its nontrivial samples are $x[0: L-1]$, where $x[0] \cdot x[L-1] \neq 0$.

Nontrivial portion of output:

Finite-Duration Input

Consider the general FIR filter of order M, with coefficient vector

$$
\mathbf{b}=\left[\begin{array}{llll}
b_{0} & b_{1} & \ldots & b_{M}
\end{array}\right]^{T}
$$

where $b_{0} b_{M} \neq 0$.
Input sequence $x[\cdot]$ has finite duration. Its nontrivial samples are $x[0: L-1]$, where $x[0] \cdot x[L-1] \neq 0$.

Nontrivial portion of output : $y[0: L+M-1]$

Finite-Duration Input

Consider the general FIR filter of order M, with coefficient vector

$$
\mathbf{b}=\left[\begin{array}{llll}
b_{0} & b_{1} & \ldots & b_{M}
\end{array}\right]^{T}
$$

where $b_{0} b_{M} \neq 0$.
Input sequence $x[\cdot]$ has finite duration. Its nontrivial samples are $x[0: L-1]$, where $x[0] \cdot x[L-1] \neq 0$.

Nontrivial portion of output : $y[0: L+M-1]$

Properties of Linear Convolution

Properties of Linear Convolution

- Commutativity

Properties of Linear Convolution

- Commutativity
b*s

Properties of Linear Convolution

- Commutativity

$$
\mathbf{b} * \mathbf{s}=\mathbf{s} * \mathbf{b}
$$

Properties of Linear Convolution

- Commutativity (prove later on)

$$
\mathbf{b} * \mathbf{s}=\mathbf{s} * \mathbf{b}
$$

Properties of Linear Convolution

- Commutativity (prove later on)

$$
\mathbf{b} * \mathbf{s}=\mathbf{s} * \mathbf{b}
$$

- Linearity

Properties of Linear Convolution

- Commutativity (prove later on)

$$
\mathbf{b} * \mathbf{s}=\mathbf{s} * \mathbf{b}
$$

- Linearity

$$
\mathbf{b} *(\alpha \mathbf{s})
$$

Properties of Linear Convolution

- Commutativity (prove later on)

$$
\mathbf{b} * \mathbf{s}=\mathbf{s} * \mathbf{b}
$$

- Linearity

$$
\mathbf{b} *(\alpha \mathbf{s})=\alpha(\quad)
$$

Properties of Linear Convolution

- Commutativity (prove later on)

$$
\mathbf{b} * \mathbf{s}=\mathbf{s} * \mathbf{b}
$$

- Linearity

$$
\mathbf{b} *(\alpha \mathbf{s})=\alpha(\mathbf{b} * \mathbf{s})
$$

Properties of Linear Convolution

- Commutativity (prove later on)

$$
\mathbf{b} * \mathbf{s}=\mathbf{s} * \mathbf{b}
$$

- Linearity

$$
\begin{array}{r}
\mathbf{b} *(\alpha \mathbf{s})=\alpha(\mathbf{b} * \mathbf{s}) \\
\mathbf{b} *(\mathbf{r}+\mathbf{s})
\end{array}
$$

Properties of Linear Convolution

- Commutativity (prove later on)

$$
\mathbf{b} * \mathbf{s}=\mathbf{s} * \mathbf{b}
$$

- Linearity

$$
\begin{aligned}
\mathbf{b} *(\alpha \mathbf{s}) & =\alpha(\mathbf{b} * \mathbf{s}) \\
\mathbf{b} *(\mathbf{r}+\mathbf{s}) & =
\end{aligned}
$$

Properties of Linear Convolution

- Commutativity (prove later on)

$$
\mathbf{b} * \mathbf{s}=\mathbf{s} * \mathbf{b}
$$

- Linearity

$$
\begin{array}{rrr}
\mathbf{b} *(\alpha \mathbf{s}) & = & \alpha(\mathbf{b} * \mathbf{s}) \\
\mathbf{b} *(\mathbf{r}+\mathbf{s}) & = & +
\end{array}
$$

Properties of Linear Convolution

- Commutativity (prove later on)

$$
\mathbf{b} * \mathbf{s}=\mathbf{s} * \mathbf{b}
$$

- Linearity

$$
\begin{aligned}
\mathbf{b} *(\alpha \mathbf{s}) & =\alpha(\mathbf{b} * \mathbf{s}) \\
\mathbf{b} *(\mathbf{r}+\mathbf{s}) & =\mathbf{b} * \mathbf{r}+
\end{aligned}
$$

Properties of Linear Convolution

- Commutativity (prove later on)

$$
\mathbf{b} * \mathbf{s}=\mathbf{s} * \mathbf{b}
$$

- Linearity

$$
\begin{aligned}
\mathbf{b} *(\alpha \mathbf{s}) & =\alpha(\mathbf{b} * \mathbf{s}) \\
\mathbf{b} *(\mathbf{r}+\mathbf{s}) & =\mathbf{b} * \mathbf{r}+\mathbf{b} * \mathbf{s}
\end{aligned}
$$

Properties of Linear Convolution

- Commutativity (prove later on)

$$
\mathbf{b} * \mathbf{s}=\mathbf{s} * \mathbf{b}
$$

- Linearity

$$
\begin{aligned}
\mathbf{b} *(\alpha \mathbf{s}) & =\alpha(\mathbf{b} * \mathbf{s}) \\
\mathbf{b} *(\mathbf{r}+\mathbf{s}) & =\mathbf{b} * \mathbf{r}+\mathbf{b} * \mathbf{s}
\end{aligned}
$$

- Zero Padding

Properties of Linear Convolution

- Commutativity (prove later on)

$$
\mathbf{b} * \mathbf{s}=\mathbf{s} * \mathbf{b}
$$

- Linearity

$$
\begin{aligned}
\mathbf{b} *(\alpha \mathbf{s}) & =\alpha(\mathbf{b} * \mathbf{s}) \\
\mathbf{b} *(\mathbf{r}+\mathbf{s}) & =\mathbf{b} * \mathbf{r}+\mathbf{b} * \mathbf{s}
\end{aligned}
$$

- Zero Padding $\mathbf{0}_{i}=$

Properties of Linear Convolution

- Commutativity (prove later on)

$$
\mathbf{b} * \mathbf{s}=\mathbf{s} * \mathbf{b}
$$

- Linearity

$$
\begin{aligned}
\mathbf{b} *(\alpha \mathbf{s}) & =\alpha(\mathbf{b} * \mathbf{s}) \\
\mathbf{b} *(\mathbf{r}+\mathbf{s}) & =\mathbf{b} * \mathbf{r}+\mathbf{b} * \mathbf{s}
\end{aligned}
$$

- Zero Padding $\mathbf{0}_{i}=$ all-zeros vector of length i

Properties of Linear Convolution

- Commutativity (prove later on)

$$
\mathbf{b} * \mathbf{s}=\mathbf{s} * \mathbf{b}
$$

- Linearity

$$
\begin{aligned}
\mathbf{b} *(\alpha \mathbf{s}) & =\alpha(\mathbf{b} * \mathbf{s}) \\
\mathbf{b} *(\mathbf{r}+\mathbf{s}) & =\mathbf{b} * \mathbf{r}+\mathbf{b} * \mathbf{s}
\end{aligned}
$$

- Zero Padding $\mathbf{0}_{i}=$ all-zeros vector of length i

$$
\mathbf{b} *\left[\begin{array}{ll}
]
\end{array}\right.
$$

Properties of Linear Convolution

- Commutativity (prove later on)

$$
\mathbf{b} * \mathbf{s}=\mathbf{s} * \mathbf{b}
$$

- Linearity

$$
\begin{aligned}
\mathbf{b} *(\alpha \mathbf{s}) & =\alpha(\mathbf{b} * \mathbf{s}) \\
\mathbf{b} *(\mathbf{r}+\mathbf{s}) & =\mathbf{b} * \mathbf{r}+\mathbf{b} * \mathbf{s}
\end{aligned}
$$

- Zero Padding $\mathbf{0}_{i}=$ all-zeros vector of length i

$$
\mathbf{b} *\left[\begin{array}{ll}
\mathbf{s} &]
\end{array}\right.
$$

Properties of Linear Convolution

- Commutativity (prove later on)

$$
\mathbf{b} * \mathbf{s}=\mathbf{s} * \mathbf{b}
$$

- Linearity

$$
\begin{aligned}
\mathbf{b} *(\alpha \mathbf{s}) & =\alpha(\mathbf{b} * \mathbf{s}) \\
\mathbf{b} *(\mathbf{r}+\mathbf{s}) & =\mathbf{b} * \mathbf{r}+\mathbf{b} * \mathbf{s}
\end{aligned}
$$

- Zero Padding $\mathbf{0}_{i}=$ all-zeros vector of length i

$$
\mathbf{b} *\left[\mathbf{s} ; \mathbf{0}_{i}\right]
$$

Properties of Linear Convolution

- Commutativity (prove later on)

$$
\mathbf{b} * \mathbf{s}=\mathbf{s} * \mathbf{b}
$$

- Linearity

$$
\begin{aligned}
\mathbf{b} *(\alpha \mathbf{s}) & =\alpha(\mathbf{b} * \mathbf{s}) \\
\mathbf{b} *(\mathbf{r}+\mathbf{s}) & =\mathbf{b} * \mathbf{r}+\mathbf{b} * \mathbf{s}
\end{aligned}
$$

- Zero Padding $\mathbf{0}_{i}=$ all-zeros vector of length i

$$
\mathbf{b} *\left[\mathbf{s} ; \mathbf{0}_{i}\right]=
$$

Properties of Linear Convolution

- Commutativity (prove later on)

$$
\mathbf{b} * \mathbf{s}=\mathbf{s} * \mathbf{b}
$$

- Linearity

$$
\begin{aligned}
\mathbf{b} *(\alpha \mathbf{s}) & =\alpha(\mathbf{b} * \mathbf{s}) \\
\mathbf{b} *(\mathbf{r}+\mathbf{s}) & =\mathbf{b} * \mathbf{r}+\mathbf{b} * \mathbf{s}
\end{aligned}
$$

- Zero Padding $\mathbf{0}_{i}=$ all-zeros vector of length i

$$
\mathbf{b} *\left[\mathbf{s} ; \mathbf{0}_{i}\right]=[\quad]
$$

Properties of Linear Convolution

- Commutativity (prove later on)

$$
\mathbf{b} * \mathbf{s}=\mathbf{s} * \mathbf{b}
$$

- Linearity

$$
\begin{aligned}
\mathbf{b} *(\alpha \mathbf{s}) & =\alpha(\mathbf{b} * \mathbf{s}) \\
\mathbf{b} *(\mathbf{r}+\mathbf{s}) & =\mathbf{b} * \mathbf{r}+\mathbf{b} * \mathbf{s}
\end{aligned}
$$

- Zero Padding $\mathbf{0}_{i}=$ all-zeros vector of length i

$$
\mathbf{b} *\left[\mathbf{s} ; \mathbf{0}_{i}\right]=[\mathbf{b} * \mathbf{s} \quad]
$$

Properties of Linear Convolution

- Commutativity (prove later on)

$$
\mathbf{b} * \mathbf{s}=\mathbf{s} * \mathbf{b}
$$

- Linearity

$$
\begin{aligned}
\mathbf{b} *(\alpha \mathbf{s}) & =\alpha(\mathbf{b} * \mathbf{s}) \\
\mathbf{b} *(\mathbf{r}+\mathbf{s}) & =\mathbf{b} * \mathbf{r}+\mathbf{b} * \mathbf{s}
\end{aligned}
$$

- Zero Padding $\mathbf{0}_{i}=$ all-zeros vector of length i

$$
\mathbf{b} *\left[\mathbf{s} ; \mathbf{0}_{i}\right]=\left[\mathbf{b} * \mathbf{s} ; \mathbf{0}_{i}\right]
$$

Properties of Linear Convolution

- Commutativity (prove later on)

$$
\mathbf{b} * \mathbf{s}=\mathbf{s} * \mathbf{b}
$$

- Linearity

$$
\begin{aligned}
\mathbf{b} *(\alpha \mathbf{s}) & =\alpha(\mathbf{b} * \mathbf{s}) \\
\mathbf{b} *(\mathbf{r}+\mathbf{s}) & =\mathbf{b} * \mathbf{r}+\mathbf{b} * \mathbf{s}
\end{aligned}
$$

- Zero Padding ($\mathbf{0}_{i}=$ all-zeros vector of length i)

$$
\mathbf{b} *\left[\mathbf{s} ; \mathbf{0}_{i}\right]=\left[\mathbf{b} * \mathbf{s} ; \mathbf{0}_{i}\right]
$$

Properties of Linear Convolution

- Commutativity (prove later on)

$$
\mathbf{b} * \mathbf{s}=\mathbf{s} * \mathbf{b}
$$

- Linearity

$$
\begin{aligned}
\mathbf{b} *(\alpha \mathbf{s}) & =\alpha(\mathbf{b} * \mathbf{s}) \\
\mathbf{b} *(\mathbf{r}+\mathbf{s}) & =\mathbf{b} * \mathbf{r}+\mathbf{b} * \mathbf{s}
\end{aligned}
$$

- Zero Padding ($\mathbf{0}_{i}=$ all-zeros vector of length i)

$$
\mathbf{b} *\left[\mathbf{s} ; \mathbf{0}_{i}\right]=\left[\mathbf{b} * \mathbf{s} ; \mathbf{0}_{i}\right]
$$

- Time Invariance

Properties of Linear Convolution

- Commutativity (prove later on)

$$
\mathbf{b} * \mathbf{s}=\mathbf{s} * \mathbf{b}
$$

- Linearity

$$
\begin{aligned}
\mathbf{b} *(\alpha \mathbf{s}) & =\alpha(\mathbf{b} * \mathbf{s}) \\
\mathbf{b} *(\mathbf{r}+\mathbf{s}) & =\mathbf{b} * \mathbf{r}+\mathbf{b} * \mathbf{s}
\end{aligned}
$$

- Zero Padding ($\mathbf{0}_{i}=$ all-zeros vector of length i)

$$
\mathbf{b} *\left[\mathbf{s} ; \mathbf{0}_{i}\right]=\left[\mathbf{b} * \mathbf{s} ; \mathbf{0}_{i}\right]
$$

- Time Invariance

$$
\mathbf{b} *\left[\begin{array}{l}
]
\end{array}\right.
$$

Properties of Linear Convolution

- Commutativity (prove later on)

$$
\mathbf{b} * \mathbf{s}=\mathbf{s} * \mathbf{b}
$$

- Linearity

$$
\begin{aligned}
\mathbf{b} *(\alpha \mathbf{s}) & =\alpha(\mathbf{b} * \mathbf{s}) \\
\mathbf{b} *(\mathbf{r}+\mathbf{s}) & =\mathbf{b} * \mathbf{r}+\mathbf{b} * \mathbf{s}
\end{aligned}
$$

- Zero Padding ($\mathbf{0}_{i}=$ all-zeros vector of length i)

$$
\mathbf{b} *\left[\mathbf{s} ; \mathbf{0}_{i}\right]=\left[\mathbf{b} * \mathbf{s} ; \mathbf{0}_{i}\right]
$$

- Time Invariance

$$
\mathbf{b} *\left[\begin{array}{ll}
\mathbf{0}_{i} &]
\end{array}\right.
$$

Properties of Linear Convolution

- Commutativity (prove later on)

$$
\mathbf{b} * \mathbf{s}=\mathbf{s} * \mathbf{b}
$$

- Linearity

$$
\begin{aligned}
\mathbf{b} *(\alpha \mathbf{s}) & =\alpha(\mathbf{b} * \mathbf{s}) \\
\mathbf{b} *(\mathbf{r}+\mathbf{s}) & =\mathbf{b} * \mathbf{r}+\mathbf{b} * \mathbf{s}
\end{aligned}
$$

- Zero Padding ($\mathbf{0}_{i}=$ all-zeros vector of length i)

$$
\mathbf{b} *\left[\mathbf{s} ; \mathbf{0}_{i}\right]=\left[\mathbf{b} * \mathbf{s} ; \mathbf{0}_{i}\right]
$$

- Time Invariance

$$
\mathbf{b} *\left[\mathbf{0}_{i} ; \mathbf{s}\right]
$$

Properties of Linear Convolution

- Commutativity (prove later on)

$$
\mathbf{b} * \mathbf{s}=\mathbf{s} * \mathbf{b}
$$

- Linearity

$$
\begin{aligned}
\mathbf{b} *(\alpha \mathbf{s}) & =\alpha(\mathbf{b} * \mathbf{s}) \\
\mathbf{b} *(\mathbf{r}+\mathbf{s}) & =\mathbf{b} * \mathbf{r}+\mathbf{b} * \mathbf{s}
\end{aligned}
$$

- Zero Padding ($\mathbf{0}_{i}=$ all-zeros vector of length i)

$$
\mathbf{b} *\left[\mathbf{s} ; \mathbf{0}_{i}\right]=\left[\mathbf{b} * \mathbf{s} ; \mathbf{0}_{i}\right]
$$

- Time Invariance

$$
\mathbf{b} *\left[\mathbf{0}_{i} ; \mathbf{s}\right]=
$$

Properties of Linear Convolution

- Commutativity (prove later on)

$$
\mathbf{b} * \mathbf{s}=\mathbf{s} * \mathbf{b}
$$

- Linearity

$$
\begin{aligned}
\mathbf{b} *(\alpha \mathbf{s}) & =\alpha(\mathbf{b} * \mathbf{s}) \\
\mathbf{b} *(\mathbf{r}+\mathbf{s}) & =\mathbf{b} * \mathbf{r}+\mathbf{b} * \mathbf{s}
\end{aligned}
$$

- Zero Padding ($\mathbf{0}_{i}=$ all-zeros vector of length i)

$$
\mathbf{b} *\left[\mathbf{s} ; \mathbf{0}_{i}\right]=\left[\mathbf{b} * \mathbf{s} ; \mathbf{0}_{i}\right]
$$

- Time Invariance

$$
\mathbf{b} *\left[\mathbf{0}_{i} ; \mathbf{s}\right]=[\quad]
$$

Properties of Linear Convolution

- Commutativity (prove later on)

$$
\mathbf{b} * \mathbf{s}=\mathbf{s} * \mathbf{b}
$$

- Linearity

$$
\begin{aligned}
\mathbf{b} *(\alpha \mathbf{s}) & =\alpha(\mathbf{b} * \mathbf{s}) \\
\mathbf{b} *(\mathbf{r}+\mathbf{s}) & =\mathbf{b} * \mathbf{r}+\mathbf{b} * \mathbf{s}
\end{aligned}
$$

- Zero Padding ($\mathbf{0}_{i}=$ all-zeros vector of length i)

$$
\mathbf{b} *\left[\mathbf{s} ; \mathbf{0}_{i}\right]=\left[\mathbf{b} * \mathbf{s} ; \mathbf{0}_{i}\right]
$$

- Time Invariance

$$
\mathbf{b} *\left[\mathbf{0}_{i} ; \mathbf{s}\right]=\left[\mathbf{0}_{i}\right]
$$

Properties of Linear Convolution

- Commutativity (prove later on)

$$
\mathbf{b} * \mathbf{s}=\mathbf{s} * \mathbf{b}
$$

- Linearity

$$
\begin{aligned}
\mathbf{b} *(\alpha \mathbf{s}) & =\alpha(\mathbf{b} * \mathbf{s}) \\
\mathbf{b} *(\mathbf{r}+\mathbf{s}) & =\mathbf{b} * \mathbf{r}+\mathbf{b} * \mathbf{s}
\end{aligned}
$$

- Zero Padding ($\mathbf{0}_{i}=$ all-zeros vector of length i)

$$
\mathbf{b} *\left[\mathbf{s} ; \mathbf{0}_{i}\right]=\left[\mathbf{b} * \mathbf{s} ; \mathbf{0}_{i}\right]
$$

- Time Invariance

$$
\mathbf{b} *\left[\mathbf{0}_{i} ; \mathbf{s}\right]=\left[\mathbf{0}_{i} ; \mathbf{b} * \mathbf{s}\right]
$$

Properties of Linear Convolution

- Commutativity (prove later on)

$$
\mathbf{b} * \mathbf{s}=\mathbf{s} * \mathbf{b}
$$

- Linearity

$$
\begin{aligned}
\mathbf{b} *(\alpha \mathbf{s}) & =\alpha(\mathbf{b} * \mathbf{s}) \\
\mathbf{b} *(\mathbf{r}+\mathbf{s}) & =\mathbf{b} * \mathbf{r}+\mathbf{b} * \mathbf{s}
\end{aligned}
$$

- Zero Padding ($\mathbf{0}_{i}=$ all-zeros vector of length i)

$$
\mathbf{b} *\left[\mathbf{s} ; \mathbf{0}_{i}\right]=\left[\mathbf{b} * \mathbf{s} ; \mathbf{0}_{i}\right]
$$

- Time Invariance

$$
\mathbf{b} *\left[\mathbf{0}_{i} ; \mathbf{s}\right]=\left[\mathbf{0}_{i} ; \mathbf{b} * \mathbf{s}\right]
$$

Implementation via Circular Convolution

Implementation via Circular Convolution

If b and s

Implementation via Circular Convolution

If \mathbf{b} and \mathbf{s} have length K and L

Implementation via Circular Convolution

If \mathbf{b} and \mathbf{s} have length K and L (respectively),

Implementation via Circular Convolution

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

Implementation via Circular Convolution

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

$$
\mathbf{b} * \mathbf{s}
$$

Implementation via Circular Convolution

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

$$
\mathbf{b} * \mathbf{s}=
$$

Implementation via Circular Convolution

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

$$
\mathbf{b} * \mathbf{s}=
$$

Implementation via Circular Convolution

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

$$
\mathbf{b} * \mathbf{s}=\left[\mathbf{b} ; \mathbf{0}_{L-1}\right] \circledast
$$

Implementation via Circular Convolution

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

$$
\mathbf{b} * \mathbf{s}=\left[\mathbf{b} ; \mathbf{0}_{L-1}\right] \circledast\left[\mathbf{s} ; \mathbf{0}_{K-1}\right]
$$

Implementation via Circular Convolution

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

$$
\mathbf{b} * \mathbf{s}=\left[\mathrm{b} ; 0_{L-1}\right] \circledast\left[\mathbf{s} ; 0_{K-1}\right]
$$

Implementation via Circular Convolution

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

$$
\mathbf{b} * \mathbf{s}=\left[\mathrm{b} ; 0_{L-1}\right] \circledast\left[\mathbf{s} ; 0_{K-1}\right]
$$

Implementation via Circular Convolution

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

$$
\mathbf{b} * \mathbf{s}=\left[\mathrm{b} ; 0_{L-1}\right] \circledast\left[\mathrm{s} ; 0_{K-1}\right]
$$

Implementation via Circular Convolution

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

$$
\mathbf{b} * \mathbf{s}=\left[\mathrm{b} ; 0_{L-1}\right] \circledast\left[\mathrm{s} ; 0_{K-1}\right]
$$

Implementation via Circular Convolution

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

$$
\mathbf{b} * \mathbf{s}=\left[\mathrm{b} ; 0_{L-1}\right] \circledast\left[\mathrm{s} ; 0_{K-1}\right]
$$

\square

b_{K-1}	\cdots	b_{0}

Implementation via Circular Convolution

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

$$
\mathbf{b} * \mathbf{s}=\left[\mathrm{b} ; 0_{L-1}\right] \circledast\left[\mathrm{s} ; 0_{K-1}\right]
$$

Implementation via Circular Convolution

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

$$
\mathbf{b} * \mathbf{s}=\left[\mathrm{b} ; 0_{L-1}\right] \circledast\left[\mathbf{s} ; 0_{K-1}\right]
$$

Implementation via Circular Convolution

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

$$
\mathbf{b} * \mathbf{s}=\left[\mathrm{b} ; 0_{L-1}\right] *\left[\mathrm{~s} ; 0_{K-1}\right]
$$

b_{K-1}	\ldots	b_{1}	b_{0}	0	\ldots	0

Implementation via Circular Convolution

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

$$
\mathbf{b} * \mathbf{s}=\left[\mathrm{b} ; 0_{L-1}\right] *\left[\mathbf{s} ; \mathbf{0}_{K-1}\right]
$$

b_{K-1}	\ldots	b_{1}	b_{0}	0	\ldots	0

Implementation via Circular Convolution

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

$$
\mathbf{b} * \mathbf{s}=\left[\mathrm{b} ; 0_{L-1}\right] *\left[\mathbf{s} ; \mathbf{0}_{K-1}\right]
$$

Implementation via Circular Convolution

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

$$
\mathbf{b} * \mathbf{s}=\left[\mathrm{b} ; 0_{L-1}\right] \circledast\left[\mathbf{s} ; \mathbf{0}_{K-1}\right]
$$

Implementation via Circular Convolution

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

$$
\mathbf{b} * \mathbf{s}=\left[\mathrm{b} ; 0_{L-1}\right] \circledast\left[\mathbf{s} ; \mathbf{0}_{K-1}\right]
$$

Recall:

Implementation via Circular Convolution

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

$$
\mathbf{b} * \mathbf{s}=\left[\mathrm{b} ; 0_{L-1}\right] \circledast\left[\mathbf{s} ; \mathbf{0}_{K-1}\right]
$$

Recall: $i^{\text {th }}$ entry of $\mathbf{x} \circledast \mathbf{y}$

Implementation via Circular Convolution

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

$$
\mathbf{b} * \mathbf{s}=\left[\mathrm{b} ; 0_{L-1}\right] \circledast\left[\mathbf{s} ; \mathbf{0}_{K-1}\right]
$$

Recall: $i^{\text {th }}$ entry of $\mathbf{x} \circledast \mathbf{y}=$ dot product

Implementation via Circular Convolution

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

$$
\mathbf{b} * \mathbf{s}=\left[\mathrm{b} ; 0_{L-1}\right] \circledast\left[\mathbf{s} ; \mathbf{0}_{K-1}\right]
$$

Recall: $i^{\text {th }}$ entry of $\mathbf{x} \circledast \mathbf{y}=$ dot product of $\mathbf{P}^{i}(\mathbf{R x})$

Implementation via Circular Convolution

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

$$
\mathbf{b} * \mathbf{s}=\left[\mathrm{b} ; 0_{L-1}\right] \circledast\left[\mathbf{s} ; \mathbf{0}_{K-1}\right]
$$

Recall: $i^{\text {th }}$ entry of $\mathbf{x} \circledast \mathbf{y}=$ dot product of $\mathbf{P}^{i}(\mathbf{R x})$ and \mathbf{y}

Implementation via Circular Convolution

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

$$
\mathbf{b} * \mathbf{s}=\left[\mathbf{b} ; \mathbf{0}_{L-1}\right] \circledast\left[\mathbf{s} ; \mathbf{0}_{K-1}\right]
$$

Recall: $i^{\text {th }}$ entry of $\mathbf{x} \circledast \mathbf{y}=$ dot product of $\mathbf{P}^{i}(\mathbf{R x})$ and \mathbf{y}

Implementation via Circular Convolution

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

$$
\mathbf{b} * \mathbf{s}=\left[\mathbf{b} ; \mathbf{0}_{L-1}\right] \circledast\left[\mathbf{s} ; \mathbf{0}_{K-1}\right]
$$

b_{0}	0	\cdots	0	b_{K-1}	\ldots	b_{1}

Recall: $i^{\text {th }}$ entry of $\mathbf{x} \circledast \mathbf{y}=$ dot product of $\mathbf{P}^{i}(\mathbf{R x})$ and \mathbf{y}

Implementation via Circular Convolution

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

$$
\mathbf{b} * \mathbf{s}=\left[\mathbf{b} ; \mathbf{0}_{L-1}\right] \circledast\left[\mathbf{s} ; \mathbf{0}_{K-1}\right]
$$

b_{0}	0	\cdots	0	b_{K-1}	\ldots	b_{1}

Recall: $i^{\text {th }}$ entry of $\mathbf{x} \circledast \mathbf{y}=$ dot product of $\mathbf{P}^{i}(\mathbf{R x})$ and \mathbf{y}

Implementation via Circular Convolution

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

$$
\mathbf{b} * \mathbf{s}=\left[\mathbf{b} ; \mathbf{0}_{L-1}\right] \circledast\left[\mathbf{s} ; \mathbf{0}_{K-1}\right]
$$

b_{1}	b_{0}	0	\ldots	0	b_{K-1}	\ldots	b_{2}

Recall: $i^{\text {th }}$ entry of $\mathbf{x} \circledast \mathbf{y}=$ dot product of $\mathbf{P}^{i}(\mathbf{R x})$ and \mathbf{y}

Implementation via Circular Convolution

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

$$
\mathbf{b} * \mathbf{s}=\left[\mathbf{b} ; \mathbf{0}_{L-1}\right] \circledast\left[\mathbf{s} ; \mathbf{0}_{K-1}\right]
$$

0	\ldots	0	b_{K-1}	\ldots	b_{n+1}	b_{n}	\ldots	b_{0}	0	\ldots	0

b_{n}	\ldots	b_{0}	0	\ldots	0	b_{K-1}	\ldots	b_{n+1}

Recall: $i^{\text {th }}$ entry of $\mathbf{x} \circledast \mathbf{y}=$ dot product of $\mathbf{P}^{i}(\mathbf{R x})$ and \mathbf{y}

Implementation via Circular Convolution

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

$$
\mathbf{b} * \mathbf{s}=\left[\mathbf{b} ; \mathbf{0}_{L-1}\right] \circledast\left[\mathbf{s} ; \mathbf{0}_{K-1}\right]
$$

Recall: $i^{\text {th }}$ entry of $\mathbf{x} \circledast \mathbf{y}=$ dot product of $\mathbf{P}^{i}(\mathbf{R x})$ and \mathbf{y}

Implementation via Circular Convolution

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

$$
\mathbf{b} * \mathbf{s}=\left[\mathbf{b} ; \mathbf{0}_{L-1}\right] \circledast\left[\mathbf{s} ; \mathbf{0}_{K-1}\right]
$$

Recall: $i^{\text {th }}$ entry of $\mathbf{x} \circledast \mathbf{y}=$ dot product of $\mathbf{P}^{i}(\mathbf{R x})$ and \mathbf{y}

Implementation via Circular Convolution

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

$$
\mathbf{b} * \mathbf{s}=\left[\mathbf{b} ; \mathbf{0}_{L-1}\right] \circledast\left[\mathbf{s} ; \mathbf{0}_{K-1}\right]
$$

b_{n}	\cdots	b_{0}	0	\cdots	0	b_{k-1}	\cdots	b_{n+1}

(Recall: $i^{\text {th }}$ entry of $\mathbf{x} \circledast \mathbf{y}=\operatorname{dot}$ product of $\mathbf{P}^{i}(\mathbf{R x})$ and $\left.\mathbf{y}\right)$

