

$$x[n] \longrightarrow \mathsf{FIR} \longrightarrow y[n]$$

Certain types of input sequences

$$x[n] \longrightarrow \mathsf{FIR} \longrightarrow y[n]$$

$$x[n] \longrightarrow \mathsf{FIR} \longrightarrow y[n]$$

Certain types of input sequences, namely

$$x[n] \longrightarrow \mathsf{FIR} \longrightarrow y[n]$$

Certain types of input sequences, namely

• complex exponentials

$$x[n] \longrightarrow \mathsf{FIR} \longrightarrow y[n]$$

Certain types of input sequences, namely

• complex exponentials with ratio z

$$x[n] \longrightarrow \mathsf{FIR} \longrightarrow y[n]$$

- complex exponentials with ratio z

$$x[n] \longrightarrow \mathsf{FIR} \longrightarrow y[n]$$

- complex exponentials with ratio z
- products

$$x[n] \longrightarrow \mathsf{FIR} \longrightarrow y[n]$$

- complex exponentials with ratio z
- products of a real exponential

$$x[n] \longrightarrow \mathsf{FIR} \longrightarrow y[n]$$

- complex exponentials with ratio z
- products of a real exponential (ratio r)

$$x[n] \longrightarrow \mathsf{FIR} \longrightarrow y[n]$$

- Certain types of input sequences, namely
 - complex exponentials with ratio z
 - products of a real exponential (ratio r) and a real sinusoid

$$x[n] \longrightarrow \mathsf{FIR} \longrightarrow y[n]$$

- complex exponentials with ratio z
- products of a real exponential (ratio r) and a real sinusoid (frequency ω)

$$x[n] \longrightarrow \mathsf{FIR} \longrightarrow y[n]$$

Certain types of input sequences, namely

- complex exponentials with ratio z
- products of a real exponential (ratio r) and a real sinusoid (frequency ω)

•

$$x[n] \longrightarrow \mathsf{FIR} \longrightarrow y[n]$$

- complex exponentials with ratio z
- products of a real exponential (ratio r) and a real sinusoid (frequency ω)
- periodic sequences

$$x[n] \longrightarrow \mathsf{FIR} \longrightarrow y[n]$$

- complex exponentials with ratio z
- products of a real exponential (ratio r) and a real sinusoid (frequency ω)
- periodic sequences with period L

$$x[n] \longrightarrow \mathsf{FIR} \longrightarrow y[n]$$

Certain types of input sequences, namely

- complex exponentials with ratio z
- products of a real exponential (ratio r) and a real sinusoid (frequency ω)
- periodic sequences with period L

produce output sequences of the same type

$$x[n] \longrightarrow \mathsf{FIR} \longrightarrow y[n]$$

Certain types of input sequences, namely

- complex exponentials with ratio z
- products of a real exponential (ratio r) and a real sinusoid (frequency ω)
- periodic sequences with period L

produce output sequences of the same type, with above parameters preserved.

$$x[n] \longrightarrow \mathsf{FIR} \longrightarrow y[n]$$

Certain types of input sequences, namely

- complex exponentials with ratio z
- products of a real exponential (ratio r) and a real sinusoid (frequency ω)
- periodic sequences with period L

produce output sequences of the same type, with above parameters preserved.

Next:

$$x[n] \longrightarrow \mathsf{FIR} \longrightarrow y[n]$$

Certain types of input sequences, namely

- complex exponentials with ratio z
- products of a real exponential (ratio r) and a real sinusoid (frequency ω)
- periodic sequences with period L

produce output sequences of the same type, with above parameters preserved.

Next: consider inputs of

$$x[n] \longrightarrow \mathsf{FIR} \longrightarrow y[n]$$

Certain types of input sequences, namely

- complex exponentials with ratio z
- products of a real exponential (ratio r) and a real sinusoid (frequency ω)
- periodic sequences with period L

produce output sequences of the same type, with above parameters preserved.

Next: consider inputs of finite duration

$$x[n] \longrightarrow \mathsf{FIR} \longrightarrow y[n]$$

Certain types of input sequences, namely

- complex exponentials with ratio z
- products of a real exponential (ratio r) and a real sinusoid (frequency ω)
- periodic sequences with period L

produce output sequences of the same type, with above parameters preserved.

Next: consider inputs of finite duration, i.e.,

$$x[n] \longrightarrow \mathsf{FIR} \longrightarrow y[n]$$

Certain types of input sequences, namely

- complex exponentials with ratio z
- products of a real exponential (ratio r) and a real sinusoid (frequency ω)
- periodic sequences with period L

produce output sequences of the same type, with above parameters preserved.

Next: consider inputs of finite duration, i.e.,

x[n] = 0

$$x[n] \longrightarrow \mathsf{FIR} \longrightarrow y[n]$$

Certain types of input sequences, namely

- complex exponentials with ratio z
- products of a real exponential (ratio r) and a real sinusoid (frequency ω)
- periodic sequences with period L

produce output sequences of the same type, with above parameters preserved.

Next: consider inputs of finite duration, i.e.,

$$x[n] = 0$$
 for $n < n_{ ext{begin}}$

$$x[n] \longrightarrow \mathsf{FIR} \longrightarrow y[n]$$

Certain types of input sequences, namely

- complex exponentials with ratio z
- products of a real exponential (ratio r) and a real sinusoid (frequency ω)
- periodic sequences with period L

produce output sequences of the same type, with above parameters preserved.

Next: consider inputs of finite duration, i.e.,

$$x[n] \ = \ 0 \qquad \text{for} \ n < n_{\text{begin}} \ \text{and} \ n > n_{\text{end}}$$

$$x[n] \longrightarrow \mathsf{FIR} \longrightarrow y[n]$$

Certain types of input sequences, namely

- complex exponentials with ratio z
- products of a real exponential (ratio r) and a real sinusoid (frequency ω)
- periodic sequences with period L

produce output sequences of the same type, with above parameters preserved.

Next: consider inputs of finite duration, i.e.,

$$x[n] \;=\; 0 \qquad {
m for} \;\; n < n_{
m begin} \;\; {
m and} \;\; n > n_{
m end}$$

Resulting output $y[\cdot]$

$$x[n] \longrightarrow \mathsf{FIR} \longrightarrow y[n]$$

Certain types of input sequences, namely

- complex exponentials with ratio z
- products of a real exponential (ratio r) and a real sinusoid (frequency ω)
- periodic sequences with period L

produce output sequences of the same type, with above parameters preserved.

Next: consider inputs of finite duration, i.e.,

$$x[n] \;=\; 0 \qquad {
m for} \;\; n < n_{
m begin} \;\; {
m and} \;\; n > n_{
m end}$$

Resulting output $y[\cdot]$ will also have finite duration.

$$x[n] \longrightarrow \mathsf{FIR} \longrightarrow y[n]$$

Certain types of input sequences, namely

- complex exponentials with ratio z
- products of a real exponential (ratio r) and a real sinusoid (frequency ω)
- periodic sequences with period L

produce output sequences of the same type, with above parameters preserved.

Next: consider inputs of finite duration, i.e.,

$$x[n] \;=\; 0 \qquad {
m for} \;\; n < n_{
m begin} \;\; {
m and} \;\; n > n_{
m end}$$

Resulting output $y[\cdot]$ will also have finite duration.

Consider the general FIR filter

Consider the general FIR filter of order ${\cal M}$

Consider the general FIR filter of order M, with coefficient vector

 $\mathbf{b} = \begin{bmatrix} & & \end{bmatrix}^T$

Consider the general FIR filter of order M, with coefficient vector

 $\mathbf{b} = [b_0 \ b_1 \ \dots \ b_M]^T$

Consider the general FIR filter of order ${\cal M},$ with coefficient vector

$$\mathbf{b} = [b_0 \ b_1 \ \dots \ b_M]^T ,$$

where

Consider the general FIR filter of order M, with coefficient vector

$$\mathbf{b} = [b_0 \ b_1 \ \dots \ b_M]^T,$$

where $b_0 b_M \neq 0$.

Consider the general FIR filter of order M, with coefficient vector

$$\mathbf{b} = [b_0 \ b_1 \ \dots \ b_M]^T ,$$

where $b_0 b_M \neq 0$.

Input sequence $x[\,\cdot\,]$

Consider the general FIR filter of order M, with coefficient vector

$$\mathbf{b} = [b_0 \ b_1 \ \dots \ b_M]^T ,$$

where $b_0 b_M \neq 0$.

Input sequence $x[\cdot]$ has finite duration.
Consider the general FIR filter of order M, with coefficient vector

$$\mathbf{b} = \begin{bmatrix} b_0 & b_1 & \dots & b_M \end{bmatrix}^T,$$

where $b_0 b_M \neq 0$.

Input sequence $x[\,\cdot\,]$ has finite duration. Its nontrivial samples

Consider the general FIR filter of order M, with coefficient vector

$$\mathbf{b} = \begin{bmatrix} b_0 & b_1 & \dots & b_M \end{bmatrix}^T,$$

where $b_0 b_M \neq 0$.

Input sequence $x[\,\cdot\,]$ has finite duration. Its nontrivial samples are x[0:L-1]

Consider the general FIR filter of order M, with coefficient vector

$$\mathbf{b} = [b_0 \ b_1 \ \dots \ b_M]^T ,$$

where $b_0 b_M \neq 0$.

Input sequence $x[\,\cdot\,]$ has finite duration. Its nontrivial samples are x[0:L-1]

Consider the general FIR filter of order M, with coefficient vector

$$\mathbf{b} = \begin{bmatrix} b_0 & b_1 & \dots & b_M \end{bmatrix}^T,$$

where $b_0 b_M \neq 0$.

Consider the general FIR filter of order M, with coefficient vector

$$\mathbf{b} = \begin{bmatrix} b_0 & b_1 & \dots & b_M \end{bmatrix}^T,$$

where $b_0 b_M \neq 0$.

Consider the general FIR filter of order M, with coefficient vector

$$\mathbf{b} = \begin{bmatrix} b_0 & b_1 & \dots & b_M \end{bmatrix}^T,$$

where $b_0 b_M \neq 0$.

Consider the general FIR filter of order M, with coefficient vector

$$\mathbf{b} = \begin{bmatrix} b_0 & b_1 & \dots & b_M \end{bmatrix}^T,$$

where $b_0 b_M \neq 0$.

Input sequence $x[\cdot]$ has finite duration. Its nontrivial samples are x[0:L-1], where $x[0] \cdot x[L-1] \neq 0$.

y[n] = 0 for n < 0

Consider the general FIR filter of order M, with coefficient vector

$$\mathbf{b} = \begin{bmatrix} b_0 & b_1 & \dots & b_M \end{bmatrix}^T,$$

where $b_0 b_M \neq 0$.

Consider the general FIR filter of order M, with coefficient vector

$$\mathbf{b} = \begin{bmatrix} b_0 & b_1 & \dots & b_M \end{bmatrix}^T,$$

where $b_0 b_M \neq 0$.

Consider the general FIR filter of order M, with coefficient vector

$$\mathbf{b} = \begin{bmatrix} b_0 & b_1 & \dots & b_M \end{bmatrix}^T,$$

where $b_0 b_M \neq 0$.

Consider the general FIR filter of order M, with coefficient vector

$$\mathbf{b} = \begin{bmatrix} b_0 & b_1 & \dots & b_M \end{bmatrix}^T,$$

where $b_0 b_M \neq 0$.

Consider the general FIR filter of order M, with coefficient vector

$$\mathbf{b} = \begin{bmatrix} b_0 & b_1 & \dots & b_M \end{bmatrix}^T,$$

where $b_0 b_M \neq 0$.

Consider the general FIR filter of order M, with coefficient vector

$$\mathbf{b} = \begin{bmatrix} b_0 & b_1 & \dots & b_M \end{bmatrix}^T,$$

where $b_0 b_M \neq 0$.

Consider the general FIR filter of order M, with coefficient vector

$$\mathbf{b} = \begin{bmatrix} b_0 & b_1 & \dots & b_M \end{bmatrix}^T,$$

where $b_0 b_M \neq 0$.

Consider the general FIR filter of order M, with coefficient vector

$$\mathbf{b} = \begin{bmatrix} b_0 & b_1 & \dots & b_M \end{bmatrix}^T,$$

where $b_0 b_M \neq 0$.

Consider the general FIR filter of order M, with coefficient vector

$$\mathbf{b} = \begin{bmatrix} b_0 & b_1 & \dots & b_M \end{bmatrix}^T,$$

where $b_0 b_M \neq 0$.

Input sequence $x[\cdot]$ has finite duration. Its nontrivial samples are x[0:L-1], where $x[0] \cdot x[L-1] \neq 0$.

 $y[n] \ = \ 0 \quad \text{for} \quad n < 0$

Consider the general FIR filter of order M, with coefficient vector

$$\mathbf{b} = \begin{bmatrix} b_0 & b_1 & \dots & b_M \end{bmatrix}^T,$$

where $b_0 b_M \neq 0$.

Input sequence $x[\cdot]$ has finite duration. Its nontrivial samples are x[0:L-1], where $x[0] \cdot x[L-1] \neq 0$.

 $y[n] = 0 \quad \text{for} \quad n < 0$

Consider the general FIR filter of order M, with coefficient vector

$$\mathbf{b} = \begin{bmatrix} b_0 & b_1 & \dots & b_M \end{bmatrix}^T,$$

where $b_0 b_M \neq 0$.

Input sequence $x[\cdot]$ has finite duration. Its nontrivial samples are x[0:L-1], where $x[0] \cdot x[L-1] \neq 0$.

 $y[n] = 0 \quad \text{for} \quad n < 0$

Consider the general FIR filter of order M, with coefficient vector

$$\mathbf{b} = \begin{bmatrix} b_0 & b_1 & \dots & b_M \end{bmatrix}^T,$$

where $b_0 b_M \neq 0$.

Input sequence $x[\cdot]$ has finite duration. Its nontrivial samples are x[0:L-1], where $x[0] \cdot x[L-1] \neq 0$.

y[n] = 0 for n < 0

Consider the general FIR filter of order M, with coefficient vector

$$\mathbf{b} = \begin{bmatrix} b_0 & b_1 & \dots & b_M \end{bmatrix}^T,$$

where $b_0 b_M \neq 0$.

Input sequence $x[\cdot]$ has finite duration. Its nontrivial samples are x[0:L-1], where $x[0] \cdot x[L-1] \neq 0$.

y[n] = 0 for n < 0

Consider the general FIR filter of order M, with coefficient vector

$$\mathbf{b} = \begin{bmatrix} b_0 & b_1 & \dots & b_M \end{bmatrix}^T,$$

where $b_0 b_M \neq 0$.

Input sequence $x[\cdot]$ has finite duration. Its nontrivial samples are x[0:L-1], where $x[0] \cdot x[L-1] \neq 0$.

 $y[n] = 0 \quad \text{for} \quad n < 0$

Consider the general FIR filter of order M, with coefficient vector

$$\mathbf{b} = \begin{bmatrix} b_0 & b_1 & \dots & b_M \end{bmatrix}^T,$$

where $b_0 b_M \neq 0$.

Input sequence $x[\cdot]$ has finite duration. Its nontrivial samples are x[0:L-1], where $x[0] \cdot x[L-1] \neq 0$.

y[n] = 0 for n < 0

Consider the general FIR filter of order M, with coefficient vector

$$\mathbf{b} = \begin{bmatrix} b_0 & b_1 & \dots & b_M \end{bmatrix}^T,$$

where $b_0 b_M \neq 0$.

Input sequence $x[\cdot]$ has finite duration. Its nontrivial samples are x[0:L-1], where $x[0] \cdot x[L-1] \neq 0$.

 $y[n] \ = \ 0 \quad \text{for} \quad n < 0$

Consider the general FIR filter of order M, with coefficient vector

$$\mathbf{b} = \begin{bmatrix} b_0 & b_1 & \dots & b_M \end{bmatrix}^T,$$

where $b_0 b_M \neq 0$.

Input sequence $x[\cdot]$ has finite duration. Its nontrivial samples are x[0:L-1], where $x[0] \cdot x[L-1] \neq 0$.

y[n] = 0 for n < 0

Consider the general FIR filter of order M, with coefficient vector

$$\mathbf{b} = \begin{bmatrix} b_0 & b_1 & \dots & b_M \end{bmatrix}^T,$$

where $b_0 b_M \neq 0$.

Input sequence $x[\cdot]$ has finite duration. Its nontrivial samples are x[0:L-1], where $x[0] \cdot x[L-1] \neq 0$.

 $y[n] \ = \ 0 \quad \text{for} \quad n < 0$

Consider the general FIR filter of order M, with coefficient vector

$$\mathbf{b} = \begin{bmatrix} b_0 & b_1 & \dots & b_M \end{bmatrix}^T,$$

where $b_0 b_M \neq 0$.

Consider the general FIR filter of order M, with coefficient vector

$$\mathbf{b} = \begin{bmatrix} b_0 & b_1 & \dots & b_M \end{bmatrix}^T,$$

where $b_0 b_M \neq 0$.

Input sequence $x[\cdot]$ has finite duration. Its nontrivial samples are x[0:L-1], where $x[0] \cdot x[L-1] \neq 0$.

y[n] = 0 for n < 0 and $n \ge L + M$ Nontrivial portion of output :

Consider the general FIR filter of order M, with coefficient vector

$$\mathbf{b} = \begin{bmatrix} b_0 & b_1 & \dots & b_M \end{bmatrix}^T,$$

where $b_0 b_M \neq 0$.

Input sequence $x[\cdot]$ has finite duration. Its nontrivial samples are x[0:L-1], where $x[0] \cdot x[L-1] \neq 0$.

y[n] = 0 for n < 0 and $n \ge L + M$ Nontrivial portion of output: y[0: L + M - 1]

Consider the general FIR filter of order M, with coefficient vector

$$\mathbf{b} = \begin{bmatrix} b_0 & b_1 & \dots & b_M \end{bmatrix}^T,$$

where $b_0 b_M \neq 0$.

Input sequence $x[\cdot]$ has finite duration. Its nontrivial samples are x[0:L-1], where $x[0] \cdot x[L-1] \neq 0$.

y[n] = 0 for n < 0 and $n \ge L + M$ Nontrivial portion of output: y[0: L + M - 1]

• Commutativity

• Commutativity

 $\mathbf{b}\ast\mathbf{s}$

• Commutativity

$$\mathbf{b}\ast\mathbf{s}\ =\ \mathbf{s}\ast\mathbf{b}$$

• Commutativity (prove later on)

 $\mathbf{b} \ast \mathbf{s} \; = \; \mathbf{s} \ast \mathbf{b}$

• Commutativity (prove later on)

 $\mathbf{b}\ast\mathbf{s}~=~\mathbf{s}\ast\mathbf{b}$

• Linearity

• Commutativity (prove later on)

 $\mathbf{b} \ast \mathbf{s} \; = \; \mathbf{s} \ast \mathbf{b}$

• Linearity

 $\mathbf{b} * (\alpha \mathbf{s})$
• Commutativity (prove later on)

 $\mathbf{b} \ast \mathbf{s} \; = \; \mathbf{s} \ast \mathbf{b}$

$$\mathbf{b} * (\alpha \mathbf{s}) = \alpha ()$$

• Commutativity (prove later on)

 $\mathbf{b} \ast \mathbf{s} \; = \; \mathbf{s} \ast \mathbf{b}$

$$\mathbf{b} * (\alpha \mathbf{s}) = \alpha (\mathbf{b} * \mathbf{s})$$

• Commutativity (prove later on)

 $\mathbf{b} \ast \mathbf{s} ~=~ \mathbf{s} \ast \mathbf{b}$

$$\begin{aligned} \mathbf{b} * (\alpha \mathbf{s}) &= & \alpha (\mathbf{b} * \mathbf{s}) \\ \mathbf{b} * (\mathbf{r} + \mathbf{s}) \end{aligned}$$

• Commutativity (prove later on)

 $\mathbf{b} \ast \mathbf{s} ~=~ \mathbf{s} \ast \mathbf{b}$

$$\begin{aligned} \mathbf{b} * (\alpha \mathbf{s}) &= & \alpha (\mathbf{b} * \mathbf{s}) \\ \mathbf{b} * (\mathbf{r} + \mathbf{s}) &= \end{aligned}$$

• Commutativity (prove later on)

 $\mathbf{b} \ast \mathbf{s} ~=~ \mathbf{s} \ast \mathbf{b}$

$$\mathbf{b} * (\alpha \mathbf{s}) = \alpha (\mathbf{b} * \mathbf{s})$$
$$\mathbf{b} * (\mathbf{r} + \mathbf{s}) = +$$

• Commutativity (prove later on)

 $\mathbf{b} \ast \mathbf{s} ~=~ \mathbf{s} \ast \mathbf{b}$

$$\mathbf{b} * (\alpha \mathbf{s}) = \alpha (\mathbf{b} * \mathbf{s})$$
$$\mathbf{b} * (\mathbf{r} + \mathbf{s}) = \mathbf{b} * \mathbf{r} + \mathbf{s}$$

• Commutativity (prove later on)

 $\mathbf{b} \ast \mathbf{s} ~=~ \mathbf{s} \ast \mathbf{b}$

$$\begin{aligned} \mathbf{b} * (\alpha \mathbf{s}) &= \alpha (\mathbf{b} * \mathbf{s}) \\ \mathbf{b} * (\mathbf{r} + \mathbf{s}) &= \mathbf{b} * \mathbf{r} + \mathbf{b} * \mathbf{s} \end{aligned}$$

• Commutativity (prove later on)

 $\mathbf{b} \ast \mathbf{s} ~=~ \mathbf{s} \ast \mathbf{b}$

• Linearity

$$\mathbf{b} * (\alpha \mathbf{s}) = \alpha (\mathbf{b} * \mathbf{s})$$
$$\mathbf{b} * (\mathbf{r} + \mathbf{s}) = \mathbf{b} * \mathbf{r} + \mathbf{b} * \mathbf{s}$$

• Zero Padding

• Commutativity (prove later on)

 $\mathbf{b} \ast \mathbf{s} ~=~ \mathbf{s} \ast \mathbf{b}$

• Linearity

$$\mathbf{b} * (\alpha \mathbf{s}) = \alpha (\mathbf{b} * \mathbf{s})$$
$$\mathbf{b} * (\mathbf{r} + \mathbf{s}) = \mathbf{b} * \mathbf{r} + \mathbf{b} * \mathbf{s}$$

• Zero Padding $\mathbf{0}_i =$

• Commutativity (prove later on)

 $\mathbf{b} \ast \mathbf{s} ~=~ \mathbf{s} \ast \mathbf{b}$

• Linearity

$$\begin{aligned} \mathbf{b} * (\alpha \mathbf{s}) &= & \alpha (\mathbf{b} * \mathbf{s}) \\ \mathbf{b} * (\mathbf{r} + \mathbf{s}) &= & \mathbf{b} * \mathbf{r} + \mathbf{b} * \mathbf{s} \end{aligned}$$

• Commutativity (prove later on)

 $\mathbf{b} \ast \mathbf{s} ~=~ \mathbf{s} \ast \mathbf{b}$

• Linearity

$$\begin{aligned} \mathbf{b} * (\alpha \mathbf{s}) &= & \alpha (\mathbf{b} * \mathbf{s}) \\ \mathbf{b} * (\mathbf{r} + \mathbf{s}) &= & \mathbf{b} * \mathbf{r} + \mathbf{b} * \mathbf{s} \end{aligned}$$

$$\mathbf{b} * [$$
]

• Commutativity (prove later on)

 $\mathbf{b} \ast \mathbf{s} ~=~ \mathbf{s} \ast \mathbf{b}$

• Linearity

$$\begin{aligned} \mathbf{b} * (\alpha \mathbf{s}) &= & \alpha (\mathbf{b} * \mathbf{s}) \\ \mathbf{b} * (\mathbf{r} + \mathbf{s}) &= & \mathbf{b} * \mathbf{r} + \mathbf{b} * \mathbf{s} \end{aligned}$$

$$\mathbf{b} * [\mathbf{s}]$$

• Commutativity (prove later on)

 $\mathbf{b} \ast \mathbf{s} ~=~ \mathbf{s} \ast \mathbf{b}$

• Linearity

$$\begin{aligned} \mathbf{b} * (\alpha \mathbf{s}) &= \alpha (\mathbf{b} * \mathbf{s}) \\ \mathbf{b} * (\mathbf{r} + \mathbf{s}) &= \mathbf{b} * \mathbf{r} + \mathbf{b} * \mathbf{s} \end{aligned}$$

$$\mathbf{b} * [\mathbf{s} ; \mathbf{0}_i]$$

• Commutativity (prove later on)

 $\mathbf{b} \ast \mathbf{s} ~=~ \mathbf{s} \ast \mathbf{b}$

• Linearity

$$\mathbf{b} * (\alpha \mathbf{s}) = \alpha (\mathbf{b} * \mathbf{s})$$
$$\mathbf{b} * (\mathbf{r} + \mathbf{s}) = \mathbf{b} * \mathbf{r} + \mathbf{b} * \mathbf{s}$$

$$\mathbf{b} * [\mathbf{s} ; \mathbf{0}_i] =$$

• Commutativity (prove later on)

 $\mathbf{b} \ast \mathbf{s} ~=~ \mathbf{s} \ast \mathbf{b}$

• Linearity

$$\mathbf{b} * (\alpha \mathbf{s}) = \alpha (\mathbf{b} * \mathbf{s})$$
$$\mathbf{b} * (\mathbf{r} + \mathbf{s}) = \mathbf{b} * \mathbf{r} + \mathbf{b} * \mathbf{s}$$

$$\mathbf{b} * [\mathbf{s} ; \mathbf{0}_i] = []$$

• Commutativity (prove later on)

 $\mathbf{b} \ast \mathbf{s} ~=~ \mathbf{s} \ast \mathbf{b}$

• Linearity

$$\mathbf{b} * (\alpha \mathbf{s}) = \alpha (\mathbf{b} * \mathbf{s})$$
$$\mathbf{b} * (\mathbf{r} + \mathbf{s}) = \mathbf{b} * \mathbf{r} + \mathbf{b} * \mathbf{s}$$

$$\mathbf{b} * [\mathbf{s} ; \mathbf{0}_i] = [\mathbf{b} * \mathbf{s}]$$

• Commutativity (prove later on)

 $\mathbf{b} \ast \mathbf{s} ~=~ \mathbf{s} \ast \mathbf{b}$

• Linearity

$$\mathbf{b} * (\alpha \mathbf{s}) = \alpha (\mathbf{b} * \mathbf{s})$$
$$\mathbf{b} * (\mathbf{r} + \mathbf{s}) = \mathbf{b} * \mathbf{r} + \mathbf{b} * \mathbf{s}$$

$$\mathbf{b} * [\mathbf{s} ; \mathbf{0}_i] = [\mathbf{b} * \mathbf{s} ; \mathbf{0}_i]$$

• Commutativity (prove later on)

 $\mathbf{b} \ast \mathbf{s} ~=~ \mathbf{s} \ast \mathbf{b}$

• Linearity

$$\mathbf{b} * (\alpha \mathbf{s}) = \alpha (\mathbf{b} * \mathbf{s})$$
$$\mathbf{b} * (\mathbf{r} + \mathbf{s}) = \mathbf{b} * \mathbf{r} + \mathbf{b} * \mathbf{s}$$

$$\mathbf{b} * [\mathbf{s} ; \mathbf{0}_i] = [\mathbf{b} * \mathbf{s} ; \mathbf{0}_i]$$

• Commutativity (prove later on)

 $\mathbf{b} \ast \mathbf{s} ~=~ \mathbf{s} \ast \mathbf{b}$

• Linearity

$$\mathbf{b} * (\alpha \mathbf{s}) = \alpha (\mathbf{b} * \mathbf{s})$$
$$\mathbf{b} * (\mathbf{r} + \mathbf{s}) = \mathbf{b} * \mathbf{r} + \mathbf{b} * \mathbf{s}$$

• Zero Padding $(\mathbf{0}_i = \text{ all-zeros vector of length } i)$

$$\mathbf{b} * [\mathbf{s} \ ; \ \mathbf{0}_i] = [\mathbf{b} * \mathbf{s} \ ; \ \mathbf{0}_i]$$

• Commutativity (prove later on)

 $\mathbf{b} \ast \mathbf{s} ~=~ \mathbf{s} \ast \mathbf{b}$

• Linearity

$$\mathbf{b} * (\alpha \mathbf{s}) = \alpha (\mathbf{b} * \mathbf{s})$$
$$\mathbf{b} * (\mathbf{r} + \mathbf{s}) = \mathbf{b} * \mathbf{r} + \mathbf{b} * \mathbf{s}$$

• Zero Padding $(\mathbf{0}_i =$ all-zeros vector of length i)

$$\mathbf{b} * [\mathbf{s} ; \mathbf{0}_i] = [\mathbf{b} * \mathbf{s} ; \mathbf{0}_i]$$

$$\mathbf{b} * [$$
]

• Commutativity (prove later on)

 $\mathbf{b} \ast \mathbf{s} ~=~ \mathbf{s} \ast \mathbf{b}$

• Linearity

$$\mathbf{b} * (\alpha \mathbf{s}) = \alpha (\mathbf{b} * \mathbf{s})$$
$$\mathbf{b} * (\mathbf{r} + \mathbf{s}) = \mathbf{b} * \mathbf{r} + \mathbf{b} * \mathbf{s}$$

• Zero Padding $(\mathbf{0}_i =$ all-zeros vector of length i)

$$\mathbf{b} * [\mathbf{s} ; \mathbf{0}_i] = [\mathbf{b} * \mathbf{s} ; \mathbf{0}_i]$$

$$\mathbf{b} * [\mathbf{0}_i]$$

• Commutativity (prove later on)

 $\mathbf{b} \ast \mathbf{s} ~=~ \mathbf{s} \ast \mathbf{b}$

• Linearity

$$\mathbf{b} * (\alpha \mathbf{s}) = \alpha (\mathbf{b} * \mathbf{s})$$
$$\mathbf{b} * (\mathbf{r} + \mathbf{s}) = \mathbf{b} * \mathbf{r} + \mathbf{b} * \mathbf{s}$$

• Zero Padding $(\mathbf{0}_i =$ all-zeros vector of length i)

$$\mathbf{b} * [\mathbf{s} ; \mathbf{0}_i] = [\mathbf{b} * \mathbf{s} ; \mathbf{0}_i]$$

$$\mathbf{b} * [\mathbf{0}_i ; \mathbf{s}]$$

• Commutativity (prove later on)

 $\mathbf{b} \ast \mathbf{s} ~=~ \mathbf{s} \ast \mathbf{b}$

• Linearity

$$\mathbf{b} * (\alpha \mathbf{s}) = \alpha (\mathbf{b} * \mathbf{s})$$
$$\mathbf{b} * (\mathbf{r} + \mathbf{s}) = \mathbf{b} * \mathbf{r} + \mathbf{b} * \mathbf{s}$$

• Zero Padding $(\mathbf{0}_i = \text{ all-zeros vector of length } i)$

$$\mathbf{b} * [\mathbf{s} \ ; \ \mathbf{0}_i] = [\mathbf{b} * \mathbf{s} \ ; \ \mathbf{0}_i]$$

$$\mathbf{b} * [\mathbf{0}_i \ ; \mathbf{s}] =$$

• Commutativity (prove later on)

 $\mathbf{b} \ast \mathbf{s} ~=~ \mathbf{s} \ast \mathbf{b}$

• Linearity

$$\mathbf{b} * (\alpha \mathbf{s}) = \alpha (\mathbf{b} * \mathbf{s})$$
$$\mathbf{b} * (\mathbf{r} + \mathbf{s}) = \mathbf{b} * \mathbf{r} + \mathbf{b} * \mathbf{s}$$

• Zero Padding $(\mathbf{0}_i = \text{ all-zeros vector of length } i)$

$$\mathbf{b} * [\mathbf{s} \ ; \ \mathbf{0}_i] = [\mathbf{b} * \mathbf{s} \ ; \ \mathbf{0}_i]$$

$$\mathbf{b} * [\mathbf{0}_i \ ; \mathbf{s}] = []$$

• Commutativity (prove later on)

 $\mathbf{b} \ast \mathbf{s} ~=~ \mathbf{s} \ast \mathbf{b}$

• Linearity

$$\mathbf{b} * (\alpha \mathbf{s}) = \alpha (\mathbf{b} * \mathbf{s})$$
$$\mathbf{b} * (\mathbf{r} + \mathbf{s}) = \mathbf{b} * \mathbf{r} + \mathbf{b} * \mathbf{s}$$

• Zero Padding $(\mathbf{0}_i = \text{ all-zeros vector of length } i)$

$$\mathbf{b} * [\mathbf{s} \ ; \ \mathbf{0}_i] = [\mathbf{b} * \mathbf{s} \ ; \ \mathbf{0}_i]$$

$$\mathbf{b} * [\mathbf{0}_i \ ; \mathbf{s}] = [\mathbf{0}_i]$$

• Commutativity (prove later on)

 $\mathbf{b} \ast \mathbf{s} ~=~ \mathbf{s} \ast \mathbf{b}$

• Linearity

$$\mathbf{b} * (\alpha \mathbf{s}) = \alpha (\mathbf{b} * \mathbf{s})$$
$$\mathbf{b} * (\mathbf{r} + \mathbf{s}) = \mathbf{b} * \mathbf{r} + \mathbf{b} * \mathbf{s}$$

• Zero Padding $(\mathbf{0}_i = \text{ all-zeros vector of length } i)$

$$\mathbf{b} * [\mathbf{s} \ ; \ \mathbf{0}_i] = [\mathbf{b} * \mathbf{s} \ ; \ \mathbf{0}_i]$$

$$\mathbf{b} * [\mathbf{0}_i \ ; \ \mathbf{s}] \ = \ [\mathbf{0}_i \ ; \ \mathbf{b} * \mathbf{s}]$$

• Commutativity (prove later on)

 $\mathbf{b} \ast \mathbf{s} ~=~ \mathbf{s} \ast \mathbf{b}$

• Linearity

$$\mathbf{b} * (\alpha \mathbf{s}) = \alpha (\mathbf{b} * \mathbf{s})$$
$$\mathbf{b} * (\mathbf{r} + \mathbf{s}) = \mathbf{b} * \mathbf{r} + \mathbf{b} * \mathbf{s}$$

• Zero Padding $(\mathbf{0}_i = \text{ all-zeros vector of length } i)$

$$\mathbf{b} * [\mathbf{s} \ ; \ \mathbf{0}_i] = [\mathbf{b} * \mathbf{s} \ ; \ \mathbf{0}_i]$$

$$\mathbf{b} * [\mathbf{0}_i \ ; \ \mathbf{s}] \ = \ [\mathbf{0}_i \ ; \ \mathbf{b} * \mathbf{s}]$$

If ${\bf b}$ and ${\bf s}$

If \mathbf{b} and \mathbf{s} have length K and L

If \mathbf{b} and \mathbf{s} have length K and L (respectively),

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

 $\mathbf{b}\ast\mathbf{s}$

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

 $\mathbf{b} \ast \mathbf{s} \;\; = \;\;$

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

 $\mathbf{b} * \mathbf{s} = \mathbf{w}$

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

 $\mathbf{b} \ast \mathbf{s} = [\mathbf{b} ; \mathbf{0}_{L-1}] \circledast$
If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

$$\mathbf{b} \ast \mathbf{s} = [\mathbf{b} ; \mathbf{0}_{L-1}] \circledast [\mathbf{s} ; \mathbf{0}_{K-1}]$$

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

 $\mathbf{b} \ast \mathbf{s} \; = \; [\mathbf{b} \; ; \; \mathbf{0}_{L-1}] \circledast [\mathbf{s} \; ; \; \mathbf{0}_{K-1}]$

 $\begin{array}{c|c} K-1 \\ \hline s_0 & \dots & s_{L-1} \\ \hline 0 & \dots & 0 \\ \end{array}$

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

Recall:

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

 $\mathbf{b} \ast \mathbf{s} \; = \; [\mathbf{b} \; ; \; \mathbf{0}_{L-1}] \circledast [\mathbf{s} \; ; \; \mathbf{0}_{K-1}]$

Recall: i^{th} entry of $\mathbf{x} \circledast \mathbf{y}$

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

 $\mathbf{b} \ast \mathbf{s} \; = \; [\mathbf{b} \; ; \; \mathbf{0}_{L-1}] \circledast [\mathbf{s} \; ; \; \mathbf{0}_{K-1}]$

Recall: i^{th} entry of $\mathbf{x} \circledast \mathbf{y} = \text{dot product}$

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

 $\mathbf{b} \ast \mathbf{s} \; = \; [\mathbf{b} \; ; \, \mathbf{0}_{L-1}] \circledast [\mathbf{s} \; ; \, \mathbf{0}_{K-1}]$

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

 $\mathbf{b} \ast \mathbf{s} \; = \; [\mathbf{b} \; ; \; \mathbf{0}_{L-1}] \circledast [\mathbf{s} \; ; \; \mathbf{0}_{K-1}]$

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

 $\mathbf{b} \ast \mathbf{s} = [\mathbf{b} ; \mathbf{0}_{L-1}] \circledast [\mathbf{s} ; \mathbf{0}_{K-1}]$

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

Recall: i^{th} entry of $\mathbf{x} \circledast \mathbf{y} = \text{dot product of } \mathbf{P}^i(\mathbf{Rx})$ and \mathbf{y}

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

 $\mathbf{b} \ast \mathbf{s} = [\mathbf{b} ; \mathbf{0}_{L-1}] \circledast [\mathbf{s} ; \mathbf{0}_{K-1}]$

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

 $\mathbf{b} \ast \mathbf{s} = [\mathbf{b} ; \mathbf{0}_{L-1}] \circledast [\mathbf{s} ; \mathbf{0}_{K-1}]$

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

 $\mathbf{b} \ast \mathbf{s} = [\mathbf{b} ; \mathbf{0}_{L-1}] \circledast [\mathbf{s} ; \mathbf{0}_{K-1}]$

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

 $\mathbf{b} \ast \mathbf{s} = [\mathbf{b} ; \mathbf{0}_{L-1}] \circledast [\mathbf{s} ; \mathbf{0}_{K-1}]$

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

$$\mathbf{b} \ast \mathbf{s} = [\mathbf{b} ; \mathbf{0}_{L-1}] \circledast [\mathbf{s} ; \mathbf{0}_{K-1}]$$

If \mathbf{b} and \mathbf{s} have length K and L (respectively), then

$$\mathbf{b} \ast \mathbf{s} = [\mathbf{b} ; \mathbf{0}_{L-1}] \circledast [\mathbf{s} ; \mathbf{0}_{K-1}]$$

