
Overview

y[n]x[n] FIR

I Certain types of input sequences, namely

• complex exponentials with ratio z

• products of a real exponential (ratio r) and a real
sinusoid (frequency ω)

• periodic sequences with period L

produce output sequences of the same type, with above
parameters preserved.

I Next: consider inputs of finite duration, i.e.,

x[n] = 0 for n < n
begin

and n > n
end

Resulting output y[ · ] will also have finite duration.
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Finite-Duration Input

Consider the general FIR filter of order M , with coefficient vector

b = [ b0 b1 . . . bM ]T ,

where b0bM 6= 0.

Input sequence x[ · ] has finite duration. Its nontrivial samples are
x[0 : L− 1], where x[0] · x[L− 1] 6= 0.

y[n] = 0 for n < 0 and n ≥ L+M

Nontrivial portion of output : y[0 : L+M − 1]

2
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Properties of Linear Convolution

• Commutativity (prove later on)

b ∗ s = s ∗b

• Linearity

b ∗ (αs) = α(b ∗ s)
b ∗ (r+ s) = b∗ r + b ∗ s

• Zero-Padding (0i = all-zeros vector of length i)

b ∗ [s ;0i] = [b ∗ s ;0i]

• Time-Invariance

b ∗ [0i ; s] = [0i ;b ∗ s]
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