Introduction to linear filters

- Introduction to linear filters
- Linearity and time invariance

- Introduction to linear filters
- Linearity and time invariance
- Sinusoidal inputs

- Introduction to linear filters
- Linearity and time invariance
- Sinusoidal inputs; complex frequency response

- Introduction to linear filters
- Linearity and time invariance
- Sinusoidal inputs; complex frequency response
- Exponential inputs

► Filter input is a *sequence*

► Filter input is a *sequence*

$$\mathbf{x} = x[\cdot] = \{x[n], n \in \mathbf{Z}\}$$

► Filter input is a *sequence*

$$\mathbf{x} = x[\cdot] = \{x[n], n \in \mathbf{Z}\}$$

Similarly for output ${\bf y}$

► Filter input is a *sequence*

$$\mathbf{x} = x[\cdot] = \{x[n], n \in \mathbf{Z}\}$$

Similarly for output $\ensuremath{\mathbf{y}}$

Input-output relationship:

► Filter input is a *sequence*

$$\mathbf{x} = x[\cdot] = \{x[n], n \in \mathbf{Z}\}$$

Similarly for output $\ensuremath{\mathbf{y}}$

Input-output relationship:

$$y[n] = b_0 x[n] + b_1 x[n-1] + \dots + b_M x[n-M]$$

Filter input is a sequence

$$\mathbf{x} = x[\cdot] = \{x[n], n \in \mathbf{Z}\}$$

Similarly for output $\ensuremath{\mathbf{y}}$

Input-output relationship:

$$y[n] = b_0 x[n] + b_1 x[n-1] + \dots + b_M x[n-M]$$

where b_0, \ldots, b_M are fixed coefficients.

Filter input is a sequence

$$\mathbf{x} = x[\cdot] = \{x[n], n \in \mathbf{Z}\}$$

Similarly for output $\ensuremath{\mathbf{y}}$

Input-output relationship:

$$y[n] = b_0 x[n] + b_1 x[n-1] + \dots + b_M x[n-M]$$

where b_0, \ldots, b_M are fixed coefficients.

Finite Impulse Response

Filter input is a sequence

$$\mathbf{x} = x[\cdot] = \{x[n], n \in \mathbf{Z}\}$$

Similarly for output ${\bf y}$

Input-output relationship:

$$y[n] = b_0 x[n] + b_1 x[n-1] + \dots + b_M x[n-M]$$

where b_0, \ldots, b_M are fixed coefficients.

Finite Impulse Response (also: moving average) filter

If also

LTI: Time-Invariance

LTI: Time-Invariance

LTI: Time-Invariance

then

