Lecture 21

Lecture 21

- Introduction to linear filters

Lecture 21

- Introduction to linear filters
- Linearity and time invariance

Lecture 21

- Introduction to linear filters
- Linearity and time invariance
- Sinusoidal inputs

Lecture 21

- Introduction to linear filters
- Linearity and time invariance
- Sinusoidal inputs; complex frequency response

Lecture 21

- Introduction to linear filters
- Linearity and time invariance
- Sinusoidal inputs; complex frequency response
- Exponential inputs

Linear Filters

Linear Filters

Linear Filters

- Filter input is a sequence

Linear Filters

- Filter input is a sequence

$$
\mathbf{x}=x[\cdot]=\{x[n], n \in \mathbf{Z}\}
$$

Linear Filters

- Filter input is a sequence

$$
\mathbf{x}=x[\cdot]=\{x[n], n \in \mathbf{Z}\}
$$

Similarly for output y

Linear Filters

- Filter input is a sequence

$$
\mathbf{x}=x[\cdot]=\{x[n], n \in \mathbf{Z}\}
$$

Similarly for output y

- Input-output relationship:

Linear Filters

- Filter input is a sequence

$$
\mathbf{x}=x[\cdot]=\{x[n], n \in \mathbf{Z}\}
$$

Similarly for output y

- Input-output relationship:

$$
y[n]=b_{0} x[n]+b_{1} x[n-1]+\cdots+b_{M} x[n-M]
$$

Linear Filters

- Filter input is a sequence

$$
\mathbf{x}=x[\cdot]=\{x[n], n \in \mathbf{Z}\}
$$

Similarly for output y

- Input-output relationship:

$$
y[n]=b_{0} x[n]+b_{1} x[n-1]+\cdots+b_{M} x[n-M]
$$

where b_{0}, \ldots, b_{M} are fixed coefficients.

Linear Filters

- Filter input is a sequence

$$
\mathbf{x}=x[\cdot]=\{x[n], n \in \mathbf{Z}\}
$$

Similarly for output y

- Input-output relationship:

$$
y[n]=b_{0} x[n]+b_{1} x[n-1]+\cdots+b_{M} x[n-M]
$$

where b_{0}, \ldots, b_{M} are fixed coefficients.

- Finite Impulse Response

Linear Filters

- Filter input is a sequence

$$
\mathbf{x}=x[\cdot]=\{x[n], n \in \mathbf{Z}\}
$$

Similarly for output y

- Input-output relationship:

$$
y[n]=b_{0} x[n]+b_{1} x[n-1]+\cdots+b_{M} x[n-M]
$$

where b_{0}, \ldots, b_{M} are fixed coefficients.

- Finite Impulse Response (also: moving average) filter

LTI: Linearity

LTI: Linearity

LTI: Linearity

If also

LTI: Linearity

If also

then

LTI: Time-Invariance

LTI: Time-Invariance

If

LTI: Time-Invariance

If

then

