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Fourier Series: Synthesis and Analysis

I s(t): periodic, fundamental period = T0

I Fourier series for s(t):

s(t) =
∞∑

k=−∞

Sk · ejkΩ0t

I Sk: coefficient of kth harmonic component, given by

Sk =
1

T0

∫ T0

0

s(t)e−jkΩ0tdt
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Fourier Series vs. DFT

I Parallel development, many similar properties

I In DFT, time and frequency domains are identical, i.e., a
finite set {0, . . . , N − 1} of indices. Both domains can be
extended in a circular or periodic fashion.

I In Fourier series

I time domain is continuous (= R) and
circular/periodic

I frequency domain is discrete (= Z) and
linear/aperiodic

I Time-frequency duality is more prominent in DFT than in
Fourier series.
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Example: Modulation

Half-wave rectification:
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Half Wave: Fourier Series Coefficients
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