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Fourier Series: Synthesis and Analysis

      −T0              0                T0      t

s(t)

I Synthesis equation for a periodic signal:

s(t) =
∞∑

k=−∞

Sk · ejkΩ0t =
∞∑

k=−∞

Sk · v(k)(t)

I kΩ0 : k
th harmonic frequency (in rad/sec)

I v(k)(t): kth Fourier sinusoid

I Analysis equation for Sk: as for DFT, involves the inner
product of v(k)(t) and s(t)
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Inner Products in Continuous Time

I If f(t) and g(t) are both periodic with period T0, then

〈f ,g〉 def
=

1

T0

∫ T0

0

f ∗(t)g(t)dt

I Integral can be taken over any interval of length T0

I Fundamental periods of f(t) and g(t) can be submultiples
of T0

I As before,
〈g, f〉 = 〈f ,g〉∗

〈f , zg〉 = z〈f ,g〉 (z ∈ C)

〈f + g ,h〉 = 〈f ,h〉+ 〈g,h〉

I Key result: Fourier sinusoids v(k)(t) are mutually
orthogonal
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Rectangular Pulse Train: FS Coefficients
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