Lecture 19

Lecture 19

- Fourier series of a periodic signal:

Lecture 19

- Fourier series of a periodic signal: analysis equation

Lecture 19

- Fourier series of a periodic signal: analysis equation
- Orthogonality of Fourier sinusoids

Lecture 19

- Fourier series of a periodic signal: analysis equation
- Orthogonality of Fourier sinusoids
- Example: Fourier series for rectangular pulse train

Fourier Series: Synthesis and Analysis

Fourier Series: Synthesis and Analysis

Fourier Series: Synthesis and Analysis

- Synthesis equation for a periodic signal

Fourier Series: Synthesis and Analysis

- Synthesis equation for a periodic signal:

$$
s(t)=\sum_{k=-\infty}^{\infty} S_{k} \cdot e^{j k \Omega_{0} t}
$$

Fourier Series: Synthesis and Analysis

- Synthesis equation for a periodic signal:

$$
s(t)=\sum_{k=-\infty}^{\infty} S_{k} \cdot e^{j k \Omega_{0} t}=\sum_{k=-\infty}^{\infty} S_{k} \cdot v^{(k)}(t)
$$

Fourier Series: Synthesis and Analysis

- Synthesis equation for a periodic signal:

$$
s(t)=\sum_{k=-\infty}^{\infty} S_{k} \cdot e^{j k \Omega_{0} t}=\sum_{k=-\infty}^{\infty} S_{k} \cdot v^{(k)}(t)
$$

- $k \Omega_{0}$:

Fourier Series: Synthesis and Analysis

- Synthesis equation for a periodic signal:

$$
s(t)=\sum_{k=-\infty}^{\infty} S_{k} \cdot e^{j k \Omega_{0} t}=\sum_{k=-\infty}^{\infty} S_{k} \cdot v^{(k)}(t)
$$

- $k \Omega_{0}: k^{\text {th }}$ harmonic frequency (in rad/sec)

Fourier Series: Synthesis and Analysis

- Synthesis equation for a periodic signal:

$$
s(t)=\sum_{k=-\infty}^{\infty} S_{k} \cdot e^{j k \Omega_{0} t}=\sum_{k=-\infty}^{\infty} S_{k} \cdot v^{(k)}(t)
$$

- $k \Omega_{0}: k^{\text {th }}$ harmonic frequency (in rad/sec)
- $v^{(k)}(t): k^{\text {th }}$ Fourier sinusoid

Fourier Series: Synthesis and Analysis

- Synthesis equation for a periodic signal:

$$
s(t)=\sum_{k=-\infty}^{\infty} S_{k} \cdot e^{j k \Omega_{0} t}=\sum_{k=-\infty}^{\infty} S_{k} \cdot v^{(k)}(t)
$$

- $k \Omega_{0}: k^{\text {th }}$ harmonic frequency (in rad/sec)
- $v^{(k)}(t): k^{\text {th }}$ Fourier sinusoid
- Analysis equation for S_{k}

Fourier Series: Synthesis and Analysis

- Synthesis equation for a periodic signal:

$$
s(t)=\sum_{k=-\infty}^{\infty} S_{k} \cdot e^{j k \Omega_{0} t}=\sum_{k=-\infty}^{\infty} S_{k} \cdot v^{(k)}(t)
$$

- $k \Omega_{0}: k^{\text {th }}$ harmonic frequency (in rad/sec)
- $v^{(k)}(t): k^{\text {th }}$ Fourier sinusoid
- Analysis equation for S_{k} : as for DFT

Fourier Series: Synthesis and Analysis

- Synthesis equation for a periodic signal:

$$
s(t)=\sum_{k=-\infty}^{\infty} S_{k} \cdot e^{j k \Omega_{0} t}=\sum_{k=-\infty}^{\infty} S_{k} \cdot v^{(k)}(t)
$$

- $k \Omega_{0}: k^{\text {th }}$ harmonic frequency (in rad/sec)
- $v^{(k)}(t): k^{\text {th }}$ Fourier sinusoid
- Analysis equation for S_{k} : as for DFT, involves the inner product of $v^{(k)}(t)$ and $s(t)$

Inner Products in Continuous Time

Inner Products in Continuous Time

- If $f(t)$ and $g(t)$ are both periodic with period T_{0}

Inner Products in Continuous Time

- If $f(t)$ and $g(t)$ are both periodic with period T_{0}, then

$$
\langle\mathbf{f}, \mathbf{g}\rangle
$$

Inner Products in Continuous Time

- If $f(t)$ and $g(t)$ are both periodic with period T_{0}, then

$$
\langle\mathbf{f}, \mathbf{g}\rangle \stackrel{\text { def }}{=} \frac{1}{T_{0}} \int_{0}^{T_{0}} f^{*}(t) g(t) d t
$$

Inner Products in Continuous Time

- If $f(t)$ and $g(t)$ are both periodic with period T_{0}, then

$$
\langle\mathbf{f}, \mathbf{g}\rangle \stackrel{\text { def }}{=} \frac{1}{T_{0}} \int_{0}^{T_{0}} f^{*}(t) g(t) d t
$$

- Integral can be taken over any interval of length T_{0}

Inner Products in Continuous Time

- If $f(t)$ and $g(t)$ are both periodic with period T_{0}, then

$$
\langle\mathbf{f}, \mathbf{g}\rangle \stackrel{\text { def }}{=} \frac{1}{T_{0}} \int_{0}^{T_{0}} f^{*}(t) g(t) d t
$$

- Integral can be taken over any interval of length T_{0}
- Fundamental periods of $f(t)$ and $g(t)$ can be submultiples of T_{0}

Inner Products in Continuous Time

- If $f(t)$ and $g(t)$ are both periodic with period T_{0}, then

$$
\langle\mathbf{f}, \mathbf{g}\rangle \stackrel{\text { def }}{=} \frac{1}{T_{0}} \int_{0}^{T_{0}} f^{*}(t) g(t) d t
$$

- Integral can be taken over any interval of length T_{0}
- Fundamental periods of $f(t)$ and $g(t)$ can be submultiples of T_{0}
- As before,

Inner Products in Continuous Time

- If $f(t)$ and $g(t)$ are both periodic with period T_{0}, then

$$
\langle\mathbf{f}, \mathbf{g}\rangle \stackrel{\text { def }}{=} \frac{1}{T_{0}} \int_{0}^{T_{0}} f^{*}(t) g(t) d t
$$

- Integral can be taken over any interval of length T_{0}
- Fundamental periods of $f(t)$ and $g(t)$ can be submultiples of T_{0}
- As before,

$$
\langle\mathbf{g}, \mathbf{f}\rangle=\langle\mathbf{f}, \mathbf{g}\rangle^{*}
$$

Inner Products in Continuous Time

- If $f(t)$ and $g(t)$ are both periodic with period T_{0}, then

$$
\langle\mathbf{f}, \mathbf{g}\rangle \stackrel{\text { def }}{=} \frac{1}{T_{0}} \int_{0}^{T_{0}} f^{*}(t) g(t) d t
$$

- Integral can be taken over any interval of length T_{0}
- Fundamental periods of $f(t)$ and $g(t)$ can be submultiples of T_{0}
- As before,

$$
\begin{aligned}
\langle\mathbf{g}, \mathbf{f}\rangle & =\langle\mathbf{f}, \mathbf{g}\rangle^{*} \\
\langle\mathbf{f}, z \mathbf{g}\rangle & =z\langle\mathbf{f}, \mathbf{g}\rangle \quad(z \in \mathbf{C})
\end{aligned}
$$

Inner Products in Continuous Time

- If $f(t)$ and $g(t)$ are both periodic with period T_{0}, then

$$
\langle\mathbf{f}, \mathbf{g}\rangle \stackrel{\text { def }}{=} \frac{1}{T_{0}} \int_{0}^{T_{0}} f^{*}(t) g(t) d t
$$

- Integral can be taken over any interval of length T_{0}
- Fundamental periods of $f(t)$ and $g(t)$ can be submultiples of T_{0}
- As before,

$$
\begin{aligned}
\langle\mathbf{g}, \mathbf{f}\rangle & =\langle\mathbf{f}, \mathbf{g}\rangle^{*} \\
\langle\mathbf{f}, z \mathbf{g}\rangle & =z\langle\mathbf{f}, \mathbf{g}\rangle \quad(z \in \mathbf{C}) \\
\langle\mathbf{f}+\mathbf{g}, \mathbf{h}\rangle & =\langle\mathbf{f}, \mathbf{h}\rangle+\langle\mathbf{g}, \mathbf{h}\rangle
\end{aligned}
$$

Inner Products in Continuous Time

- If $f(t)$ and $g(t)$ are both periodic with period T_{0}, then

$$
\langle\mathbf{f}, \mathbf{g}\rangle \stackrel{\text { def }}{=} \frac{1}{T_{0}} \int_{0}^{T_{0}} f^{*}(t) g(t) d t
$$

- Integral can be taken over any interval of length T_{0}
- Fundamental periods of $f(t)$ and $g(t)$ can be submultiples of T_{0}
- As before,

$$
\begin{aligned}
\langle\mathbf{g}, \mathbf{f}\rangle & =\langle\mathbf{f}, \mathbf{g}\rangle^{*} \\
\langle\mathbf{f}, z \mathbf{g}\rangle & =z\langle\mathbf{f}, \mathbf{g}\rangle \quad(z \in \mathbf{C}) \\
\langle\mathbf{f}+\mathbf{g}, \mathbf{h}\rangle & =\langle\mathbf{f}, \mathbf{h}\rangle+\langle\mathbf{g}, \mathbf{h}\rangle
\end{aligned}
$$

- Key result:

Inner Products in Continuous Time

- If $f(t)$ and $g(t)$ are both periodic with period T_{0}, then

$$
\langle\mathbf{f}, \mathbf{g}\rangle \stackrel{\text { def }}{=} \frac{1}{T_{0}} \int_{0}^{T_{0}} f^{*}(t) g(t) d t
$$

- Integral can be taken over any interval of length T_{0}
- Fundamental periods of $f(t)$ and $g(t)$ can be submultiples of T_{0}
- As before,

$$
\begin{aligned}
\langle\mathbf{g}, \mathbf{f}\rangle & =\langle\mathbf{f}, \mathbf{g}\rangle^{*} \\
\langle\mathbf{f}, z \mathbf{g}\rangle & =z\langle\mathbf{f}, \mathbf{g}\rangle \quad(z \in \mathbf{C}) \\
\langle\mathbf{f}+\mathbf{g}, \mathbf{h}\rangle & =\langle\mathbf{f}, \mathbf{h}\rangle+\langle\mathbf{g}, \mathbf{h}\rangle
\end{aligned}
$$

- Key result: Fourier sinusoids $v^{(k)}(t)$ are mutually orthogonal

Rectangular Pulse Train: FS Coefficients

