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» Fourier series of a periodic signal: analysis equation
» Orthogonality of Fourier sinusoids

» Example: Fourier series for rectangular pulse train
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» Synthesis equation for a periodic signal:

s(t) = Z Sy, - edkot — Z S - v® (1)

k=—o00 k=—o00

» kQo: k'™ harmonic frequency (in rad/sec)

» v(®)(t): k™ Fourier sinusoid
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Synthesis equation for a periodic signal:

s(t) = Z S, - eIkt — Z Skm(k)(t)

k=—o0 k=—o0

kQq : k™ harmonic frequency (in rad/sec)
v®)(t): k" Fourier sinusoid

Analysis equation for Sy
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Synthesis equation for a periodic signal:

s(t) = Z S, - eIkt — Z Sk~v(k)(t)

k=—o0 k=—o0

kQq : k™ harmonic frequency (in rad/sec)
v®)(t): k" Fourier sinusoid

Analysis equation for S: as for DFT
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Fourier Series: Synthesis and Analysis
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Synthesis equation for a periodic signal:

s(t) = Z S, - eIkt — Z Sk~v(k)(t)

k=—o0 k=—o0

kQq : k™ harmonic frequency (in rad/sec)
v®)(t): k" Fourier sinusoid

Analysis equation for S;: as for DFT, involves the inner
product of v®)(t) and s(t)
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If f(t) and g(t) are both periodic with period Ty, then

der 1 o
(f.g) = 7 /. fr(t)g(t)dt

Integral can be taken over any interval of length Tj

Fundamental periods of f(t) and g(t) can be submultiples
of TO

As before,
(g,f) = (f,g)"
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Inner Products in Continuous Time

If f(t) and g(t) are both periodic with period Ty, then

ar 1 [T
fg) [ pg
0Jo
Integral can be taken over any interval of length Tj

Fundamental periods of f(t) and g(t) can be submultiples
of TO

As before,
(g.f) = (f.8)
(f.zg) = z(f.g) (2€C)
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If f(t) and g(t) are both periodic with period Ty, then
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g 2 L[ e
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Integral can be taken over any interval of length Tj

Fundamental periods of f(t) and g(t) can be submultiples
of TO

As before,
(g.f) = (f,g)"
(f,2g) = z(f,g) (2€0)
(f+g,h) = (f,h)+ (g h)
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Integral can be taken over any interval of length Tj

Fundamental periods of f(t) and g(t) can be submultiples
of TO

As before,
(g.f) = (f,g)"
(f,2g) = z(f,g) (2€0)
(f+g,h) = (f,h)+ (g h)

Key result:



Inner Products in Continuous Time

If f(t) and g(t) are both periodic with period Ty, then
dr 1 [T
g 2 L[ e
0 Jo

Integral can be taken over any interval of length Tj

Fundamental periods of f(t) and g(t) can be submultiples
of TO

As before,
(g.f) = (f,g)"
(f, 2g) z(f,g) (2 €0)
(f+g,h) = (f,h)+ (g h)

Key result: Fourier sinusoids v*)(¢) are mutually
orthogonal



Rectangular Pulse Train: FS Coefficients
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