Lecture 18

Lecture 18

- Fourier series of a periodic signal in continuous time

Lecture 18

- Fourier series of a periodic signal in continuous time
- Bandlimited signals (finite Fourier series)

Lecture 18

- Fourier series of a periodic signal in continuous time
- Bandlimited signals (finite Fourier series): relationship to DFT

Lecture 18

- Fourier series of a periodic signal in continuous time
- Bandlimited signals (finite Fourier series): relationship to DFT
- Infinite series

Lecture 18

- Fourier series of a periodic signal in continuous time
- Bandlimited signals (finite Fourier series): relationship to DFT
- Infinite series: successive approximation

Periodic Sequences in Discrete Time

Periodic Sequences in Discrete Time

DFT synthesis equation for a vector $s[0: L-1]$:

Periodic Sequences in Discrete Time

DFT synthesis equation for a vector $s[0: L-1]$: linear combination of L sinusoids

$$
s[n]=\frac{1}{L} \sum_{k=0}^{L-1} S[k] v^{(k)}[n]
$$

Periodic Sequences in Discrete Time

DFT synthesis equation for a vector $s[0: L-1]$: linear combination of L sinusoids

$$
s[n]=\frac{1}{L} \sum_{k=0}^{L-1} S[k] v^{(k)}[n]
$$

Evaluated for all integers n

Periodic Sequences in Discrete Time

DFT synthesis equation for a vector $s[0: L-1]$: linear combination of L sinusoids

$$
s[n]=\frac{1}{L} \sum_{k=0}^{L-1} S[k] v^{(k)}[n]
$$

Evaluated for all integers n : a sequence $p[n]$ with period L

Periodic Sequences in Discrete Time

DFT synthesis equation for a vector $s[0: L-1]$: linear combination of L sinusoids

$$
s[n]=\frac{1}{L} \sum_{k=0}^{L-1} S[k] v^{(k)}[n]
$$

Evaluated for all integers n : a sequence $p[n]$ with period L

Periodic Signals in Continuous Time

Periodic Signals in Continuous Time

- $s(t)$ is periodic with period T_{0} if for all t,

$$
s(t)=s\left(t+T_{0}\right)
$$

Periodic Signals in Continuous Time

- $s(t)$ is periodic with period T_{0} if for all t,

$$
s(t)=s\left(t+T_{0}\right)
$$

- Fundamental period: smallest such T_{0}

Periodic Signals in Continuous Time

- $s(t)$ is periodic with period T_{0} if for all t,

$$
s(t)=s\left(t+T_{0}\right)
$$

- Fundamental period: smallest such T_{0}

Periodic Signals in Continuous Time

- $s(t)$ is periodic with period T_{0} if for all t,

$$
s(t)=s\left(t+T_{0}\right)
$$

- Fundamental period: smallest such T_{0}

- Most periodic signals can be written as sums of sinusoids

Periodic Signals in Continuous Time

- $s(t)$ is periodic with period T_{0} if for all t,

$$
s(t)=s\left(t+T_{0}\right)
$$

- Fundamental period: smallest such T_{0}

- Most periodic signals can be written as sums of sinusoids:

$$
s(t)=\sum_{k=-\infty}^{\infty} S_{k} \cdot v^{(k)}(t)
$$

Periodic Signals in Continuous Time

- $s(t)$ is periodic with period T_{0} if for all t,

$$
s(t)=s\left(t+T_{0}\right)
$$

- Fundamental period: smallest such T_{0}

- Most periodic signals can be written as sums of sinusoids:

$$
s(t)=\sum_{k=-\infty}^{\infty} S_{k} \cdot v^{(k)}(t)
$$

- $v^{(k)}(t)$: complex sinusoid of frequency $k / T_{0}=k f_{0}(\mathrm{~Hz})$

Finite Fourier Series Example

Finite Fourier Series Example

$$
\begin{aligned}
& \text { - } s(t)=5.0+6.2 \cos (25 \pi t+0.3) \\
& +4.6 \cos (100 \pi t-1.9)+2.8 \cos (175 \pi t+2.5)
\end{aligned}
$$

Finite Fourier Series Example

$$
\begin{aligned}
& \text { - } s(t)=5.0+6.2 \cos (25 \pi t+0.3) \\
& +4.6 \cos (100 \pi t-1.9)+2.8 \cos (175 \pi t+2.5)
\end{aligned}
$$

- Fundamental frequency f_{0}

Finite Fourier Series Example

$$
\begin{aligned}
& \text { - } s(t)=5.0+6.2 \cos (25 \pi t+0.3) \\
& +4.6 \cos (100 \pi t-1.9)+2.8 \cos (175 \pi t+2.5)
\end{aligned}
$$

- Fundamental frequency f_{0} : GCD of $12.5,50$ and 87.5 Hz

Finite Fourier Series Example

$$
\begin{aligned}
& \text { - } s(t)=5.0+6.2 \cos (25 \pi t+0.3) \\
& +4.6 \cos (100 \pi t-1.9)+2.8 \cos (175 \pi t+2.5)
\end{aligned}
$$

- Fundamental frequency f_{0} : GCD of $12.5,50$ and 87.5 Hz

$$
f_{0}=12.5 \mathrm{~Hz}
$$

Finite Fourier Series Example

$$
\begin{aligned}
& \text { - } s(t)=5.0+6.2 \cos (25 \pi t+0.3) \\
& +4.6 \cos (100 \pi t-1.9)+2.8 \cos (175 \pi t+2.5)
\end{aligned}
$$

- Fundamental frequency f_{0} : GCD of $12.5,50$ and 87.5 Hz

$$
f_{0}=12.5 \mathrm{~Hz} \Rightarrow T_{0}=0.08 \mathrm{sec}
$$

Finite Fourier Series Example

- $s(t)=5.0+6.2 \cos (25 \pi t+0.3)$ $+4.6 \cos (100 \pi t-1.9)+2.8 \cos (175 \pi t+2.5)$
- Fundamental frequency f_{0} : GCD of $12.5,50$ and 87.5 Hz

$$
f_{0}=12.5 \mathrm{~Hz} \Rightarrow T_{0}=0.08 \mathrm{sec}
$$

