Lecture 17

Lecture 17

- Periodic and zero-padded extensions of a vector

Lecture 17

- Periodic and zero-padded extensions of a vector
- The spectrum of a sinusoidal vector

Lecture 17

- Periodic and zero-padded extensions of a vector
- The spectrum of a sinusoidal vector: Fourier frequencies as special cases

Lecture 17

- Periodic and zero-padded extensions of a vector
- The spectrum of a sinusoidal vector: Fourier frequencies as special cases
- Frequency estimation

Lecture 17

- Periodic and zero-padded extensions of a vector
- The spectrum of a sinusoidal vector: Fourier frequencies as special cases
- Frequency estimation: application of zero-padding

Periodic Extension

Periodic Extension

Periodic Extension

If \mathbf{x} consists of a whole number of copies of \mathbf{s},

Periodic Extension

If \mathbf{x} consists of a whole number of copies of \mathbf{s}, i.e., $N=M L$,

Periodic Extension

If \mathbf{x} consists of a whole number of copies of \mathbf{s}, i.e., $N=M L$, then the DFT \mathbf{X} is easily obtained from \mathbf{S}

Periodic Extension

If \mathbf{x} consists of a whole number of copies of \mathbf{s}, i.e., $N=M L$, then the DFT \mathbf{X} is easily obtained from \mathbf{S} :

$$
\mathbf{X}=M
$$

Periodic Extension

If \mathbf{x} consists of a whole number of copies of \mathbf{s}, i.e., $N=M L$, then the DFT \mathbf{X} is easily obtained from \mathbf{S} :

$$
\mathbf{X}=M \cdot\left[S[0] \quad \mathbf{0}_{M-1}^{T}\right.
$$

Periodic Extension

If \mathbf{x} consists of a whole number of copies of \mathbf{s}, i.e., $N=M L$, then the DFT \mathbf{X} is easily obtained from \mathbf{S} :

$$
\mathbf{X}=M \cdot\left[S[0] \quad \mathbf{0}_{M-1}^{T} \quad S[1] \quad \mathbf{0}_{M-1}^{T}\right.
$$

Periodic Extension

If \mathbf{x} consists of a whole number of copies of \mathbf{s}, i.e., $N=M L$, then the DFT \mathbf{X} is easily obtained from \mathbf{S} :

$$
\mathbf{X}=M \cdot\left[S[0] \quad \mathbf{0}_{M-1}^{T} \quad S[1] \quad \mathbf{0}_{M-1}^{T} \quad \ldots\right.
$$

Periodic Extension

If \mathbf{x} consists of a whole number of copies of \mathbf{s}, i.e., $N=M L$, then the DFT \mathbf{X} is easily obtained from \mathbf{S} :

$$
\left.\begin{array}{rlll}
\mathbf{X}=M \cdot\left[\begin{array}{lll}
S[0] & \mathbf{0}_{M-1}^{T} & S[1]
\end{array} \mathbf{0}_{M-1}^{T}\right. & \ldots \\
& \ldots & S[L-1] & \mathbf{0}_{M-1}^{T}
\end{array}\right]^{T}
$$

Zero-Padded Extension

Zero-Padded Extension

Zero-Padded Extension

- If $N=M L$,

Zero-Padded Extension

- If $N=M L$, then the DFT \mathbf{S} is obtained by sampling every $M^{\text {th }}$ entry of \mathbf{Y}

Zero-Padded Extension

- If $N=M L$, then the DFT \mathbf{S} is obtained by sampling every $M^{\text {th }}$ entry of \mathbf{Y}
- Zero-padding allows us to interpolate a spectrum.

Zero-Padded Extension

- If $N=M L$, then the DFT \mathbf{S} is obtained by sampling every $M^{\text {th }}$ entry of \mathbf{Y}
- Zero-padding allows us to interpolate a spectrum. In effect, we are computing the inner product

$$
\left\langle\mathbf{v}^{(\omega)}, \mathbf{s}\right\rangle
$$

Zero-Padded Extension

- If $N=M L$, then the DFT \mathbf{S} is obtained by sampling every $M^{\text {th }}$ entry of \mathbf{Y}
- Zero-padding allows us to interpolate a spectrum. In effect, we are computing the inner product

$$
\left\langle\mathbf{v}^{(\omega)}, \mathbf{s}\right\rangle=\sum_{n=0}^{L-1} s[n] e^{-j \omega n}
$$

Zero-Padded Extension

- If $N=M L$, then the DFT \mathbf{S} is obtained by sampling every $M^{\text {th }}$ entry of \mathbf{Y}
- Zero-padding allows us to interpolate a spectrum. In effect, we are computing the inner product

$$
\left\langle\mathbf{v}^{(\omega)}, \mathbf{s}\right\rangle=\sum_{n=0}^{L-1} s[n] e^{-j \omega n}
$$

for an arbitrary number N of frequencies in $[0,2 \pi)$

Zero-Padded Extension

- If $N=M L$, then the DFT \mathbf{S} is obtained by sampling every $M^{\text {th }}$ entry of \mathbf{Y}
- Zero-padding allows us to interpolate a spectrum. In effect, we are computing the inner product

$$
\left\langle\mathbf{v}^{(\omega)}, \mathbf{s}\right\rangle=\sum_{n=0}^{L-1} s[n] e^{-j \omega n}
$$

for an arbitrary number N of frequencies in $[0,2 \pi)$. (Here, $\mathbf{v}^{(\omega)}$ is a complex sinusoid of frequency ω)

Estimating the Frequency of a Sinusoid

Estimating the Frequency of a Sinusoid

- The continuous-time sinusoid

$$
s(t)=A \cos \left(\Omega_{0} t+\phi\right)
$$

Estimating the Frequency of a Sinusoid

- The continuous-time sinusoid

$$
s(t)=A \cos \left(\Omega_{0} t+\phi\right)
$$

is sampled at times $0, T_{s}, \ldots,(L-1) T_{s}$.

Estimating the Frequency of a Sinusoid

- The continuous-time sinusoid

$$
s(t)=A \cos \left(\Omega_{0} t+\phi\right)
$$

is sampled at times $0, T_{s}, \ldots,(L-1) T_{s}$. Sample vector: \mathbf{s}

Estimating the Frequency of a Sinusoid

- The continuous-time sinusoid

$$
s(t)=A \cos \left(\Omega_{0} t+\phi\right)
$$

is sampled at times $0, T_{s}, \ldots,(L-1) T_{s}$. Sample vector: \mathbf{s}

- Under what conditions does Ω_{0} correspond to a Fourier frequency for s ?

Estimating the Frequency of a Sinusoid

- The continuous-time sinusoid

$$
s(t)=A \cos \left(\Omega_{0} t+\phi\right)
$$

is sampled at times $0, T_{s}, \ldots,(L-1) T_{s}$. Sample vector: \mathbf{s}

- Under what conditions does Ω_{0} correspond to a Fourier frequency for s ?
- If Ω_{0} does not correspond to a Fourier frequency, what does the DFT S look like?

Estimating the Frequency of a Sinusoid

- The continuous-time sinusoid

$$
s(t)=A \cos \left(\Omega_{0} t+\phi\right)
$$

is sampled at times $0, T_{s}, \ldots,(L-1) T_{s}$. Sample vector: \mathbf{s}

- Under what conditions does Ω_{0} correspond to a Fourier frequency for s ?
- If Ω_{0} does not correspond to a Fourier frequency, what does the DFT S look like?
- How to estimate Ω_{0} with arbitrary accuracy

Estimating the Frequency of a Sinusoid

- The continuous-time sinusoid

$$
s(t)=A \cos \left(\Omega_{0} t+\phi\right)
$$

is sampled at times $0, T_{s}, \ldots,(L-1) T_{s}$. Sample vector: \mathbf{s}

- Under what conditions does Ω_{0} correspond to a Fourier frequency for s ?
- If Ω_{0} does not correspond to a Fourier frequency, what does the DFT S look like?
- How to estimate Ω_{0} with arbitrary accuracy using zero-padding

Estimating the Frequency of a Sinusoid

- The continuous-time sinusoid

$$
s(t)=A \cos \left(\Omega_{0} t+\phi\right)
$$

is sampled at times $0, T_{s}, \ldots,(L-1) T_{s}$. Sample vector: \mathbf{s}

- Under what conditions does Ω_{0} correspond to a Fourier frequency for s ?
- If Ω_{0} does not correspond to a Fourier frequency, what does the DFT S look like?
- How to estimate Ω_{0} with arbitrary accuracy using zero-padding (complex sinusoid, for simplicity)

