Periodic and zero-padded extensions of a vector

- Periodic and zero-padded extensions of a vector
- ► The spectrum of a sinusoidal vector

- Periodic and zero-padded extensions of a vector
- The spectrum of a sinusoidal vector: Fourier frequencies as special cases

- Periodic and zero-padded extensions of a vector
- The spectrum of a sinusoidal vector: Fourier frequencies as special cases
- Frequency estimation

- Periodic and zero-padded extensions of a vector
- The spectrum of a sinusoidal vector: Fourier frequencies as special cases
- Frequency estimation: application of zero-padding

If ${\bf x}$ consists of a whole number of copies of ${\bf s},$

If x consists of a whole number of copies of s, i.e., N = ML,

$$\mathbf{X} = M$$

$$\mathbf{X} = M \cdot \begin{bmatrix} S[0] & \mathbf{0}_{M-1}^T \end{bmatrix}$$

$$\mathbf{X} = M \cdot \begin{bmatrix} S[0] & \mathbf{0}_{M-1}^T & S[1] & \mathbf{0}_{M-1}^T \end{bmatrix}$$

If x consists of a whole number of copies of s, i.e., N = ML, then the DFT X is easily obtained from S:

$$\mathbf{X} = M \cdot \begin{bmatrix} S[0] & \mathbf{0}_{M-1}^T & S[1] & \mathbf{0}_{M-1}^T & \dots \end{bmatrix}$$

. . .

$$\mathbf{X} = M \cdot \begin{bmatrix} S[0] & \mathbf{0}_{M-1}^T & S[1] & \mathbf{0}_{M-1}^T & \dots \\ \dots & S[L-1] & \mathbf{0}_{M-1}^T \end{bmatrix}^T$$

• If
$$N = ML$$
,

► If N = ML, then the DFT S is obtained by sampling every Mth entry of Y

- ► If N = ML, then the DFT S is obtained by sampling every Mth entry of Y
- Zero-padding allows us to interpolate a spectrum.

- ► If N = ML, then the DFT S is obtained by sampling every Mth entry of Y
- Zero-padding allows us to interpolate a spectrum. In effect, we are computing the inner product

$$\langle \mathbf{v}^{(\omega)}, \mathbf{s}
angle$$

- ► If N = ML, then the DFT S is obtained by sampling every Mth entry of Y
- Zero-padding allows us to interpolate a spectrum. In effect, we are computing the inner product

$$\langle \mathbf{v}^{(\omega)}, \mathbf{s} \rangle = \sum_{n=0}^{L-1} s[n] e^{-j\omega n}$$

- ► If N = ML, then the DFT S is obtained by sampling every Mth entry of Y
- Zero-padding allows us to interpolate a spectrum. In effect, we are computing the inner product

$$\langle \mathbf{v}^{(\omega)}, \mathbf{s} \rangle = \sum_{n=0}^{L-1} s[n] e^{-j\omega n}$$

for an arbitrary number N of frequencies in $[0, 2\pi)$

- ► If N = ML, then the DFT S is obtained by sampling every Mth entry of Y
- Zero-padding allows us to interpolate a spectrum. In effect, we are computing the inner product

$$\langle \mathbf{v}^{(\omega)}, \mathbf{s} \rangle = \sum_{n=0}^{L-1} s[n] e^{-j\omega n}$$

for an arbitrary number N of frequencies in $[0, 2\pi)$. (Here, $\mathbf{v}^{(\omega)}$ is a complex sinusoid of frequency ω)

The continuous-time sinusoid

$$s(t) = A\cos(\Omega_0 t + \phi)$$

The continuous-time sinusoid

$$s(t) = A\cos(\Omega_0 t + \phi)$$

is sampled at times $0, T_s, \ldots, (L-1)T_s$.

The continuous-time sinusoid

$$s(t) = A\cos(\Omega_0 t + \phi)$$

The continuous-time sinusoid

$$s(t) = A\cos(\Omega_0 t + \phi)$$

is sampled at times $0, T_s, \ldots, (L-1)T_s$. Sample vector: s

► Under what conditions does Ω₀ correspond to a Fourier frequency for s?

The continuous-time sinusoid

$$s(t) = A\cos(\Omega_0 t + \phi)$$

- ► Under what conditions does Ω₀ correspond to a Fourier frequency for s?
- If Ω₀ does not correspond to a Fourier frequency, what does the DFT S look like?

The continuous-time sinusoid

$$s(t) = A\cos(\Omega_0 t + \phi)$$

- ► Under what conditions does Ω₀ correspond to a Fourier frequency for s?
- If Ω₀ does not correspond to a Fourier frequency, what does the DFT S look like?
- How to estimate Ω_0 with arbitrary accuracy

The continuous-time sinusoid

$$s(t) = A\cos(\Omega_0 t + \phi)$$

- ► Under what conditions does Ω₀ correspond to a Fourier frequency for s?
- If Ω₀ does not correspond to a Fourier frequency, what does the DFT S look like?
- \blacktriangleright How to estimate Ω_0 with arbitrary accuracy using zero-padding

The continuous-time sinusoid

$$s(t) = A\cos(\Omega_0 t + \phi)$$

- ► Under what conditions does Ω₀ correspond to a Fourier frequency for s?
- If Ω₀ does not correspond to a Fourier frequency, what does the DFT S look like?
- ► How to estimate Ω₀ with arbitrary accuracy using zero-padding (complex sinusoid, for simplicity)