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Periodic Extension

x
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If x consists of a whole number of copies of s, i.e., N = ML,
then the DFT X is easily obtained from S:
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I If N = ML, then the DFT S is obtained by sampling
every M th entry of Y

I Zero-padding allows us to interpolate a spectrum. In
effect, we are computing the inner product

〈v(ω), s〉 =
L−1∑
n=0

s[n]e−jωn

for an arbitrary number N of frequencies in [0, 2π).
(Here, v(ω) is a complex sinusoid of frequency ω)
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Estimating the Frequency of a Sinusoid

I The continuous-time sinusoid

s(t) = A cos(Ω0t+ φ)

is sampled at times 0, Ts, . . . , (L− 1)Ts. Sample vector: s

I Under what conditions does Ω0 correspond to a Fourier
frequency for s?

I If Ω0 does not correspond to a Fourier frequency, what
does the DFT S look like?

I How to estimate Ω0 with arbitrary accuracy using
zero-padding (complex sinusoid, for simplicity)
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