Lecture 16

Lecture 16

- Circular Convolution

Lecture 16

- Circular Convolution
- Duality between circular convolution

Lecture 16

- Circular Convolution
- Duality between circular convolution \circledast and element-by-element multiplication \diamond

Lecture 16

- Circular Convolution
- Duality between circular convolution \circledast and element-by-element multiplication \diamond
- DFT synthesis equation and the infinite periodic extension of a vector

Lecture 16

- Circular Convolution
- Duality between circular convolution \circledast and element-by-element multiplication \diamond
- DFT synthesis equation and the infinite periodic extension of a vector
- Finite-length periodic extension

Lecture 16

- Circular Convolution
- Duality between circular convolution \circledast and element-by-element multiplication \diamond
- DFT synthesis equation and the infinite periodic extension of a vector
- Finite-length periodic extension: special cases

New Operations: \diamond and \circledast

New Operations: \diamond and \circledast

Element-by-element product $\mathbf{s}=\mathbf{x} \diamond \mathbf{y}$:

$$
s[n]=(\mathbf{x} \diamond \mathbf{y})[n]
$$

New Operations: \diamond and \circledast

Element-by-element product $\mathbf{s}=\mathbf{x} \diamond \mathbf{y}$:

$$
s[n]=(\mathbf{x} \diamond \mathbf{y})[n]=x[n] y[n], \quad n=0: N-1
$$

New Operations: \diamond and \circledast

Element-by-element product $\mathbf{s}=\mathbf{x} \diamond \mathbf{y}$:

$$
s[n]=(\mathbf{x} \diamond \mathbf{y})[n]=x[n] y[n], \quad n=0: N-1
$$

To find the DFT S :

New Operations: \diamond and \circledast

Element-by-element product $\mathbf{s}=\mathbf{x} \diamond \mathbf{y}$:

$$
s[n]=(\mathbf{x} \diamond \mathbf{y})[n]=x[n] y[n], \quad n=0: N-1
$$

To find the DFT S :

- Synthesis equation:

$$
\mathbf{y}=\frac{1}{N} \mathbf{V} \mathbf{Y}
$$

New Operations: \diamond and \circledast

Element-by-element product $\mathbf{s}=\mathbf{x} \diamond \mathbf{y}$:

$$
s[n]=(\mathbf{x} \diamond \mathbf{y})[n]=x[n] y[n], \quad n=0: N-1
$$

To find the DFT S :

- Synthesis equation:

$$
\mathbf{y}=\frac{1}{N} \mathbf{V Y}=\sum_{k=0}^{N-1} b_{k} \mathbf{v}^{(k)}
$$

where $\mathbf{b}=\mathbf{Y} / N$.

New Operations: \diamond and \circledast

Element-by-element product $\mathbf{s}=\mathbf{x} \diamond \mathbf{y}$:

$$
s[n]=(\mathbf{x} \diamond \mathbf{y})[n]=x[n] y[n], \quad n=0: N-1
$$

To find the DFT S :

- Synthesis equation:

$$
\mathbf{y}=\frac{1}{N} \mathbf{V Y}=\sum_{k=0}^{N-1} b_{k} \mathbf{v}^{(k)}
$$

where $\mathbf{b}=\mathbf{Y} / N$.

- Then write \mathbf{s} as

$$
\mathbf{s}=\mathbf{x} \diamond \sum_{k=0}^{N-1} b_{k} \mathbf{v}^{(k)}
$$

New Operations: \diamond and \circledast

Element-by-element product $\mathbf{s}=\mathbf{x} \diamond \mathbf{y}$:

$$
s[n]=(\mathbf{x} \diamond \mathbf{y})[n]=x[n] y[n], \quad n=0: N-1
$$

To find the DFT S :

- Synthesis equation:

$$
\mathbf{y}=\frac{1}{N} \mathbf{V Y}=\sum_{k=0}^{N-1} b_{k} \mathbf{v}^{(k)}
$$

where $\mathbf{b}=\mathbf{Y} / N$.

- Then write \mathbf{s} as

$$
\mathbf{s}=\mathbf{x} \diamond \sum_{k=0}^{N-1} b_{k} \mathbf{v}^{(k)}=\sum_{k=0}^{N-1} b_{k}\left(\mathbf{x} \diamond \mathbf{v}^{(k)}\right)
$$

New Operations: \diamond and \circledast

Element-by-element product $\mathbf{s}=\mathbf{x} \diamond \mathbf{y}$:

$$
s[n]=(\mathbf{x} \diamond \mathbf{y})[n]=x[n] y[n], \quad n=0: N-1
$$

To find the DFT S :

- Synthesis equation:

$$
\mathbf{y}=\frac{1}{N} \mathbf{V Y}=\sum_{k=0}^{N-1} b_{k} \mathbf{v}^{(k)}
$$

where $\mathbf{b}=\mathbf{Y} / N$.

- Then write s as

$$
\mathbf{s}=\mathbf{x} \diamond \sum_{k=0}^{N-1} b_{k} \mathbf{v}^{(k)}=\sum_{k=0}^{N-1} b_{k}\left(\mathbf{x} \diamond \mathbf{v}^{(k)}\right)
$$

- Use modulation \Leftrightarrow circular shift

New Operations: \diamond and \circledast

Element-by-element product $\mathbf{s}=\mathbf{x} \diamond \mathbf{y}$:

$$
s[n]=(\mathbf{x} \diamond \mathbf{y})[n]=x[n] y[n], \quad n=0: N-1
$$

To find the DFT \mathbf{S} :

- Synthesis equation:

$$
\mathbf{y}=\frac{1}{N} \mathbf{V Y}=\sum_{k=0}^{N-1} b_{k} \mathbf{v}^{(k)}
$$

where $\mathbf{b}=\mathbf{Y} / N$.

- Then write \mathbf{s} as

$$
\mathbf{s}=\mathbf{x} \diamond \sum_{k=0}^{N-1} b_{k} \mathbf{v}^{(k)}=\sum_{k=0}^{N-1} b_{k}\left(\mathbf{x} \diamond \mathbf{v}^{(k)}\right)
$$

- Use modulation \Leftrightarrow circular shift
- Conclude: $\mathbf{S}=\mathbf{C}_{X} \mathbf{b}$

New Operations: \diamond and \circledast

Element-by-element product $\mathbf{s}=\mathbf{x} \diamond \mathbf{y}$:

$$
s[n]=(\mathbf{x} \diamond \mathbf{y})[n]=x[n] y[n], \quad n=0: N-1
$$

To find the DFT \mathbf{S} :

- Synthesis equation:

$$
\mathbf{y}=\frac{1}{N} \mathbf{V Y}=\sum_{k=0}^{N-1} b_{k} \mathbf{v}^{(k)}
$$

where $\mathbf{b}=\mathbf{Y} / N$.

- Then write \mathbf{s} as

$$
\mathbf{s}=\mathbf{x} \diamond \sum_{k=0}^{N-1} b_{k} \mathbf{v}^{(k)}=\sum_{k=0}^{N-1} b_{k}\left(\mathbf{x} \diamond \mathbf{v}^{(k)}\right)
$$

- Use modulation \Leftrightarrow circular shift
- Conclude: $\mathbf{S}=\mathbf{C}_{X} \mathbf{b}=(\mathbf{X} \circledast \mathbf{Y}) / N$

Circular Convolution \circledast

Circular Convolution \circledast

Circular convolution matrix of vector a:

$$
\mathbf{C}_{a}=\left[\begin{array}{ccccc}
a_{0} & a_{N-1} & a_{N-2} & \ldots & a_{1} \\
a_{1} & a_{0} & a_{N-1} & \ldots & a_{2} \\
a_{2} & a_{1} & a_{0} & \ldots & a_{3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{N-1} & a_{N-2} & a_{N-3} & \ldots & a_{0}
\end{array}\right]
$$

Circular Convolution \circledast

Circular convolution matrix of vector a:

$$
\begin{gathered}
\mathbf{C}_{a}=\left[\begin{array}{ccccc}
a_{0} & a_{N-1} & a_{N-2} & \ldots & a_{1} \\
a_{1} & a_{0} & a_{N-1} & \ldots & a_{2} \\
a_{2} & a_{1} & a_{0} & \ldots & a_{3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{N-1} & a_{N-2} & a_{N-3} & \ldots & a_{0}
\end{array}\right] \\
\mathbf{a} \circledast \mathbf{b} \stackrel{\text { def }}{=} \mathbf{C}_{a} \mathbf{b}
\end{gathered}
$$

Circular Convolution \circledast

Circular convolution matrix of vector a:

$$
\begin{gathered}
\mathbf{C}_{a}=\left[\begin{array}{ccccc}
a_{0} & a_{N-1} & a_{N-2} & \ldots & a_{1} \\
a_{1} & a_{0} & a_{N-1} & \ldots & a_{2} \\
a_{2} & a_{1} & a_{0} & \ldots & a_{3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{N-1} & a_{N-2} & a_{N-3} & \ldots & a_{0}
\end{array}\right] \\
\mathbf{a} \circledast \mathbf{b} \stackrel{\text { def }}{=} \mathbf{C}_{a} \mathbf{b}
\end{gathered}
$$

Then

$$
\mathbf{x} \diamond \mathbf{y} \quad \longleftrightarrow \quad \frac{1}{N} \mathbf{X} \circledast \mathbf{Y}
$$

Circular Convolution \circledast

Circular convolution matrix of vector a:

$$
\begin{gathered}
\mathbf{C}_{a}=\left[\begin{array}{ccccc}
a_{0} & a_{N-1} & a_{N-2} & \ldots & a_{1} \\
a_{1} & a_{0} & a_{N-1} & \ldots & a_{2} \\
a_{2} & a_{1} & a_{0} & \ldots & a_{3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{N-1} & a_{N-2} & a_{N-3} & \ldots & a_{0}
\end{array}\right] \\
\mathbf{a} \circledast \mathbf{b} \stackrel{\text { def }}{=} \mathbf{C}_{a} \mathbf{b}
\end{gathered}
$$

Then

$$
\begin{array}{lll}
\mathbf{x} \diamond \mathbf{y} & \longleftrightarrow & \frac{1}{N} \mathbf{X} \circledast \mathbf{Y} \\
\mathbf{x} \circledast \mathbf{y} & \longleftrightarrow & \mathbf{X} \diamond \mathbf{Y}
\end{array}
$$

Example: Polynomial Multiplication

Example: Polynomial Multiplication

$$
a(t)=1-2 t+3 t^{2}
$$

Example: Polynomial Multiplication

$$
\begin{aligned}
a(t) & =1-2 t+3 t^{2} \\
b(t) & =2+t-t^{2}+2 t^{3}
\end{aligned}
$$

Example: Polynomial Multiplication

$$
\begin{aligned}
a(t) & =1-2 t+3 t^{2} \\
b(t) & =2+t-t^{2}+2 t^{3} \\
\Rightarrow \quad a(t) b(t) &
\end{aligned}
$$

Example: Polynomial Multiplication

$$
\begin{aligned}
a(t) & =1-2 t+3 t^{2} \\
b(t) & =2+t-t^{2}+2 t^{3} \\
\Rightarrow \quad a(t) b(t) & =2-3 t+3 t^{2}+7 t^{3}-7 t^{4}+6 t^{5}
\end{aligned}
$$

Example: Polynomial Multiplication

$$
\begin{aligned}
a(t) & =1-2 t+3 t^{2} \\
b(t) & =2+t-t^{2}+2 t^{3} \\
\Rightarrow \quad a(t) b(t) & =2-3 t+3 t^{2}+7 t^{3}-7 t^{4}+6 t^{5}
\end{aligned}
$$

- Also:

Example: Polynomial Multiplication

$$
\begin{aligned}
a(t) & =1-2 t+3 t^{2} \\
b(t) & =2+t-t^{2}+2 t^{3} \\
\Rightarrow \quad a(t) b(t) & =2-3 t+3 t^{2}+7 t^{3}-7 t^{4}+6 t^{5}
\end{aligned}
$$

- Also:

$$
\mathbf{a}=\left[\begin{array}{llllll}
1 & -2 t & 3 t^{2} & 0 & 0 & 0
\end{array}\right]^{T}
$$

Example: Polynomial Multiplication

$$
\begin{aligned}
a(t) & =1-2 t+3 t^{2} \\
b(t) & =2+t-t^{2}+2 t^{3} \\
\Rightarrow \quad a(t) b(t) & =2-3 t+3 t^{2}+7 t^{3}-7 t^{4}+6 t^{5}
\end{aligned}
$$

- Also:

$$
\begin{array}{r}
\mathbf{a}=\left[\begin{array}{llllll}
1 & -2 t & 3 t^{2} & 0 & 0 & 0
\end{array}\right]^{T} \\
\mathbf{b}
\end{array}=\left[\begin{array}{llllll}
2 & t & -t^{2} & 2 t^{3} & 0 & 0
\end{array}\right]^{T} .
$$

Example: Polynomial Multiplication

$$
\begin{aligned}
a(t) & =1-2 t+3 t^{2} \\
b(t) & =2+t-t^{2}+2 t^{3} \\
\Rightarrow \quad a(t) b(t) & =2-3 t+3 t^{2}+7 t^{3}-7 t^{4}+6 t^{5}
\end{aligned}
$$

- Also:

$$
\begin{aligned}
\mathbf{a} & =\left[\begin{array}{llllll}
1 & -2 t & 3 t^{2} & 0 & 0 & 0
\end{array}\right]^{T} \\
\mathbf{b} & =\left[\begin{array}{llllll}
2 & t & -t^{2} & 2 t^{3} & 0 & 0
\end{array}\right]^{T} \\
\Rightarrow \mathbf{a} \circledast \mathbf{b} & =\left[\begin{array}{llllll}
2 & -3 t & 3 t^{2} & 7 t^{3} & -7 t^{4} & 6 t^{5}
\end{array}\right]^{T}
\end{aligned}
$$

Example: Polynomial Multiplication

$$
\begin{aligned}
a(t) & =1-2 t+3 t^{2} \\
b(t) & =2+t-t^{2}+2 t^{3} \\
\Rightarrow \quad a(t) b(t) & =2-3 t+3 t^{2}+7 t^{3}-7 t^{4}+6 t^{5}
\end{aligned}
$$

- Also:

$$
\begin{aligned}
\mathbf{a} & =\left[\begin{array}{llllll}
1 & -2 t & 3 t^{2} & 0 & 0 & 0
\end{array}\right]^{T} \\
\mathbf{b} & =\left[\begin{array}{llllll}
2 & t & -t^{2} & 2 t^{3} & 0 & 0
\end{array}\right]^{T} \\
\Rightarrow \mathbf{a} \circledast \mathbf{b} & =\left[\begin{array}{llllll}
2 & -3 t & 3 t^{2} & 7 t^{3} & -7 t^{4} & 6 t^{5}
\end{array}\right]^{T}
\end{aligned}
$$

- More on this at the end of the semester.

Periodic Extension

Periodic Extension

- Synthesis equation for vector \mathbf{s} of length L :

$$
s[n]=\frac{1}{L} \sum_{k=0}^{L-1} S[k] e^{j(2 \pi / L) k n}, \quad n=0: L-1
$$

Periodic Extension

- Synthesis equation for vector s of length L :

$$
s[n]=\frac{1}{L} \sum_{k=0}^{L-1} S[k] e^{j(2 \pi / L) k n}, \quad n=0: L-1
$$

- Next: compute for all integers n

Periodic Extension

- Synthesis equation for vector s of length L :

$$
s[n]=\frac{1}{L} \sum_{k=0}^{L-1} S[k] e^{j(2 \pi / L) k n}, \quad n=0: L-1
$$

- Next: compute for all integers n to obtain a sequence $p[n]$

Periodic Extension

- Synthesis equation for vector s of length L :

$$
s[n]=\frac{1}{L} \sum_{k=0}^{L-1} S[k] e^{j(2 \pi / L) k n}, \quad n=0: L-1
$$

- Next: compute for all integers n to obtain a sequence $p[n]$ such that $p[0: L-1]=\mathbf{s}$

Periodic Extension

- Synthesis equation for vector s of length L :

$$
s[n]=\frac{1}{L} \sum_{k=0}^{L-1} S[k] e^{j(2 \pi / L) k n}, \quad n=0: L-1
$$

- Next: compute for all integers n to obtain a sequence $p[n]$ such that $p[0: L-1]=\mathbf{s}$
- Each Fourier sinusoid repeats every L samples

Periodic Extension

- Synthesis equation for vector s of length L :

$$
s[n]=\frac{1}{L} \sum_{k=0}^{L-1} S[k] e^{j(2 \pi / L) k n}, \quad n=0: L-1
$$

- Next: compute for all integers n to obtain a sequence $p[n]$ such that $p[0: L-1]=\mathbf{s}$
- Each Fourier sinusoid repeats every L samples \Rightarrow so does $p[n]$

Periodic Extension

- Synthesis equation for vector s of length L :

$$
s[n]=\frac{1}{L} \sum_{k=0}^{L-1} S[k] e^{j(2 \pi / L) k n}, \quad n=0: L-1
$$

- Next: compute for all integers n to obtain a sequence $p[n]$ such that $p[0: L-1]=\mathbf{s}$
- Each Fourier sinusoid repeats every L samples \Rightarrow so does $p[n]$

x

