Lecture 15

Lecture 15

- Derivation of new DFT pairs from $\mathbf{x} \longleftrightarrow \mathbf{X}$

Lecture 15

- Derivation of new DFT pairs from $\mathbf{x} \longleftrightarrow \mathbf{X}$
- Duality between circular shift \mathbf{P} and modulation \mathbf{F}

Lecture 15

- Derivation of new DFT pairs from $\mathbf{x} \longleftrightarrow \mathbf{X}$
- Duality between circular shift \mathbf{P} and modulation \mathbf{F}
- Duality between DFT and its inverse

Lecture 15

- Derivation of new DFT pairs from $\mathbf{x} \longleftrightarrow \mathbf{X}$
- Duality between circular shift \mathbf{P} and modulation \mathbf{F}
- Duality between DFT and its inverse
- Symmetry properties of DFT

Last Lecture

Last Lecture

- Circular Shift P

Last Lecture

- Circular Shift P
- Circular Reversal R

Last Lecture

- Circular Shift P
- Circular Reversal R

Time Domain
Frequency Domain

Last Lecture

- Circular Shift \mathbf{P}
- Circular Reversal R

Time Domain
Frequency Domain
$\mathbf{x}=\frac{1}{N} \mathbf{V} \mathbf{X}$

Last Lecture

- Circular Shift \mathbf{P}
- Circular Reversal R

Time Domain
$\mathbf{x}=\frac{1}{N} \mathbf{V X} \quad \longleftrightarrow \mathbf{X}=\mathbf{V}^{*} \mathbf{x}$

Last Lecture

- Circular Shift \mathbf{P}
- Circular Reversal R

Time Domain
$\mathbf{x}=\frac{1}{N} \mathbf{V} \mathbf{X}$
Frequency Domain
$\mathbf{X}=\mathbf{V}^{*} \mathbf{x}=\mathbf{W} \mathbf{x}$

Last Lecture

- Circular Shift P
- Circular Reversal R

Last Lecture

- Circular Shift P
- Circular Reversal R

Last Lecture

- Circular Shift P
- Circular Reversal R

Last Lecture

- Circular Shift P
- Circular Reversal R

Last Lecture

- Circular Shift P
- Circular Reversal R

- Diagonal modulation matrix \mathbf{F}

Last Lecture

- Circular Shift P
- Circular Reversal R

- Diagonal modulation matrix \mathbf{F} has $k=1^{\text {st }}$ Fourier sinusoid on the leading diagonal

Last Lecture

- Circular Shift P
- Circular Reversal R

Time Domain

$$
\mathbf{x}=\frac{1}{N} \mathbf{V X}
$$ Rx

x*
*

Frequency Domain
$\mathbf{X}=\mathbf{V}^{*} \mathbf{x}=\mathbf{W} \mathbf{x}$
RX
RX ${ }^{*}$

- Diagonal modulation matrix \mathbf{F} has $k=1^{\text {st }}$ Fourier sinusoid on the leading diagonal
- $\mathbf{F}^{k} \mathbf{x}$: entry-wise product of \mathbf{x} and $k^{\text {th }}$ Fourier sinusoid

Further DFT Pairs

Further DFT Pairs

- Auxiliary identities:

Further DFT Pairs

- Auxiliary identities:

$$
\mathbf{V} \mathbf{P}^{m}=\mathbf{F}^{m} \mathbf{V}, \quad \mathbf{P}^{m} \mathbf{V}=\mathbf{V} \mathbf{F}^{-m}
$$

Further DFT Pairs

- Auxiliary identities:

$$
\begin{array}{ll}
\mathbf{V P}^{m}=\mathbf{F}^{m} \mathbf{V}, & \mathbf{P}^{m} \mathbf{V}=\mathbf{V F}^{-m} \\
\mathbf{W P}^{m}=\mathbf{F}^{-m} \mathbf{W}, & \mathbf{P}^{m} \mathbf{W}=\mathbf{W F}^{m}
\end{array}
$$

Further DFT Pairs

- Auxiliary identities:

$$
\begin{array}{ll}
\mathbf{V P}^{m}=\mathbf{F}^{m} \mathbf{V}, & \mathbf{P}^{m} \mathbf{V}=\mathbf{V} \mathbf{F}^{-m} \\
\mathbf{W P}^{m}=\mathbf{F}^{-m} \mathbf{W}, & \mathbf{P}^{m} \mathbf{W}=\mathbf{W F}^{m}
\end{array}
$$

Time Domain
Frequency Domain

$$
\mathbf{x}=\frac{1}{N} \mathbf{V} \mathbf{X} \quad \longleftrightarrow \quad \mathbf{X}=\mathbf{W} \mathbf{x}
$$

Further DFT Pairs

- Auxiliary identities:

$$
\begin{array}{ll}
\mathbf{V P}^{m}=\mathbf{F}^{m} \mathbf{V}, & \mathbf{P}^{m} \mathbf{V}=\mathbf{V} \mathbf{F}^{-m} \\
\mathbf{W P}^{m}=\mathbf{F}^{-m} \mathbf{W}, & \mathbf{P}^{m} \mathbf{W}=\mathbf{W F}^{m}
\end{array}
$$

Time Domain
Frequency Domain

$$
\mathbf{x}=\frac{1}{N} \mathbf{V X} \quad \longleftrightarrow \quad \mathbf{X}=\mathbf{W} \mathbf{x}
$$

$\mathbf{P}^{m} \mathbf{x}$

Further DFT Pairs

- Auxiliary identities:

$$
\begin{array}{ll}
\mathbf{V P}^{m}=\mathbf{F}^{m} \mathbf{V}, & \mathbf{P}^{m} \mathbf{V}=\mathbf{V} \mathbf{F}^{-m} \\
\mathbf{W P}^{m}=\mathbf{F}^{-m} \mathbf{W}, & \mathbf{P}^{m} \mathbf{W}=\mathbf{W F}^{m}
\end{array}
$$

Time Domain
Frequency Domain

$$
\begin{array}{rll}
\mathbf{x}=\frac{1}{N} \mathbf{V X} & \longleftrightarrow \mathbf{X}=\mathbf{W} \mathbf{x} \\
\mathbf{P}^{m} \mathbf{x} & \longleftrightarrow & \mathbf{F}^{-m} \mathbf{X}
\end{array}
$$

Further DFT Pairs

- Auxiliary identities:

$$
\begin{array}{ll}
\mathbf{V P}^{m}=\mathbf{F}^{m} \mathbf{V}, & \mathbf{P}^{m} \mathbf{V}=\mathbf{V} \mathbf{F}^{-m} \\
\mathbf{W P}^{m}=\mathbf{F}^{-m} \mathbf{W}, & \mathbf{P}^{m} \mathbf{W}=\mathbf{W F}^{m}
\end{array}
$$

Time Domain
Frequency Domain

$$
\begin{array}{rll}
\mathbf{x}=\frac{1}{N} \mathbf{V X} & \longleftrightarrow \mathbf{X}=\mathbf{W} \mathbf{x} \\
\mathbf{P}^{m} \mathbf{x} & \longleftrightarrow & \mathbf{F}^{-m} \mathbf{X}
\end{array}
$$

Further DFT Pairs

- Auxiliary identities:

$$
\begin{array}{ll}
\mathbf{V P}^{m}=\mathbf{F}^{m} \mathbf{V}, & \mathbf{P}^{m} \mathbf{V}=\mathbf{V} \mathbf{F}^{-m} \\
\mathbf{W P}^{m}=\mathbf{F}^{-m} \mathbf{W}, & \mathbf{P}^{m} \mathbf{W}=\mathbf{W F}^{m}
\end{array}
$$

Time Domain
Frequency Domain

$$
\begin{array}{rll}
\mathbf{x}=\frac{1}{N} \mathbf{V X} & \longleftrightarrow & \mathbf{X}=\mathbf{W} \mathbf{x} \\
\mathbf{P}^{m} \mathbf{x} & \longleftrightarrow & \mathbf{F}^{-m} \mathbf{X} \\
\mathbf{F}^{m} \mathbf{x} & \longleftrightarrow & \mathbf{P}^{m} \mathbf{X}
\end{array}
$$

Further DFT Pairs

- Auxiliary identities:

$$
\begin{array}{ll}
\mathbf{V P}^{m}=\mathbf{F}^{m} \mathbf{V}, & \mathbf{P}^{m} \mathbf{V}=\mathbf{V} \mathbf{F}^{-m} \\
\mathbf{W P}^{m}=\mathbf{F}^{-m} \mathbf{W}, & \mathbf{P}^{m} \mathbf{W}=\mathbf{W F}^{m}
\end{array}
$$

$$
\begin{array}{rll}
\text { Time Domain } & & \text { Frequer } \\
\mathbf{x}=\frac{1}{N} \mathbf{V} \mathbf{X} & \longleftrightarrow & \mathbf{X}=\mathbf{W} \\
\mathbf{P}^{m} \mathbf{x} & \longleftrightarrow & \mathbf{F}^{-m} \mathbf{X} \\
\mathbf{F}^{m} \mathbf{x} & \longleftrightarrow & \mathbf{P}^{m} \mathbf{X}
\end{array}
$$

Frequency Domain

DFT Duality:

Further DFT Pairs

- Auxiliary identities:

$$
\begin{array}{ll}
\mathbf{V P}^{m}=\mathbf{F}^{m} \mathbf{V}, & \mathbf{P}^{m} \mathbf{V}=\mathbf{V} \mathbf{F}^{-m} \\
\mathbf{W P}^{m}=\mathbf{F}^{-m} \mathbf{W}, & \mathbf{P}^{m} \mathbf{W}=\mathbf{W F}^{m}
\end{array}
$$

$$
\begin{array}{rll}
\text { Time Domain } & & \text { Frequer } \\
\mathbf{x}=\frac{1}{N} \mathbf{V} \mathbf{X} & \longleftrightarrow & \mathbf{X}=\mathbf{W} \\
\mathbf{P}^{m} \mathbf{x} & \longleftrightarrow & \mathbf{F}^{-m} \mathbf{X} \\
\mathbf{F}^{m} \mathbf{x} & \longleftrightarrow & \mathbf{P}^{m} \mathbf{X}
\end{array}
$$

Frequency Domain

DFT Duality: X

Further DFT Pairs

- Auxiliary identities:

$$
\begin{array}{ll}
\mathbf{V P}^{m}=\mathbf{F}^{m} \mathbf{V}, & \mathbf{P}^{m} \mathbf{V}=\mathbf{V} \mathbf{F}^{-m} \\
\mathbf{W P}^{m}=\mathbf{F}^{-m} \mathbf{W}, & \mathbf{P}^{m} \mathbf{W}=\mathbf{W F}^{m}
\end{array}
$$

Time Domain

$$
\mathbf{x}=\frac{1}{N} \mathbf{V} \mathbf{X}
$$

$$
\longleftrightarrow
$$

$\mathbf{X}=\mathbf{W} \mathbf{x}$
$\mathbf{P}^{m} \mathbf{x}$
\longleftrightarrow
$\mathbf{F}^{-m} \mathbf{X}$
$\mathbf{F}^{m} \mathbf{x}$
\longleftrightarrow
$\mathbf{P}^{m} \mathbf{X}$

Frequency Domain

DFT Duality: $\mathrm{X} \quad \longleftrightarrow \quad N R x$

Examples

Examples

$$
\left[\begin{array}{llllll}
a & b & c & d & e & f
\end{array}\right]^{T} \longleftrightarrow\left[\begin{array}{llllll}
A & B & C & D & E & F
\end{array}\right]^{T}
$$

Examples

$$
\left.\begin{array}{l}
{\left[\begin{array}{lllll}
a & b & c & d & e
\end{array}\right]}
\end{array}\right]^{T} \longleftrightarrow\left[\begin{array}{llllll}
A & B & C & D & E & F
\end{array}\right]^{T} .
$$

Examples

$$
\left.\begin{array}{l}
{\left[\begin{array}{lllll}
a & b & c & d & e
\end{array}\right]}
\end{array}\right]^{T} \longleftrightarrow\left[\begin{array}{llllll}
A & B & C & D & E & F
\end{array}\right]^{T},\left[\begin{array}{llllllll}
A & F & E & D & C & B
\end{array}\right]^{T} .
$$

Examples

$$
\begin{aligned}
& {\left[\begin{array}{lllll}
a b l l l
\end{array}\right]^{T} \longleftrightarrow\left[\begin{array}{llllll}
A & B & C & D & E & F
\end{array}\right]^{T}} \\
& {\left[\begin{array}{lllll}
a & f & e & d & c
\end{array}\right]^{T} \longleftrightarrow\left[\begin{array}{llllll}
A & F & E & D & C & B
\end{array}\right]^{T}} \\
& {\left[\begin{array}{lllll}
d & e & f & a & b
\end{array}\right]^{T}}
\end{aligned}
$$

Examples

$$
\left.\begin{array}{l}
{\left[\begin{array}{lllll}
a & b & c & d & e
\end{array}\right]}
\end{array}\right]^{T} \longleftrightarrow\left[\begin{array}{llllll}
A & B & C & D & E & F
\end{array}\right]^{T},\left[\begin{array}{lllllll}
a & f & e & d & c & b
\end{array}\right]^{T} \longleftrightarrow\left[\begin{array}{lllllll}
A & F & E & D & C & B
\end{array}\right]^{T},\left[\begin{array}{lllllll}
A & -B & C & -D & E & -F
\end{array}\right]^{T} .
$$

Examples

$$
\begin{aligned}
& {\left[\begin{array}{llllll}
a & b & c & d & e & f
\end{array}\right]^{T} \longleftrightarrow\left[\begin{array}{llllll}
A & B & C & D & E & F
\end{array}\right]^{T}} \\
& {\left[\begin{array}{llllll}
a & f & e & d & c & b
\end{array}\right]^{T} \longleftrightarrow\left[\begin{array}{llllll}
A & F & E & D & C & B
\end{array}\right]^{T}} \\
& {\left[\begin{array}{llllll}
d & e & f & a & b & c
\end{array}\right]^{T} \longleftrightarrow\left[\begin{array}{llllll}
A & -B & C & -D & E & -F
\end{array}\right]^{T}} \\
& {\left[\begin{array}{llllll}
a & -b & c & -d & e & -f
\end{array}\right]^{T}}
\end{aligned}
$$

Examples

$$
\begin{aligned}
& {\left[\begin{array}{llllll}
a & b & c & d & e & f
\end{array}\right]^{T} \longleftrightarrow\left[\begin{array}{llllll}
A & B & C & D & E & F
\end{array}\right]^{T}} \\
& {\left[\begin{array}{llllll}
a & f & e & d & c & b
\end{array}\right]^{T} \longleftrightarrow\left[\begin{array}{llllll}
A & F & E & D & C & B
\end{array}\right]^{T}} \\
& {\left[\begin{array}{llllll}
d & e & f & a & b & c
\end{array}\right]^{T} \longleftrightarrow\left[\begin{array}{llllll}
A & -B & C & -D & E & -F
\end{array}\right]^{T}} \\
& {\left[\begin{array}{llllll}
a & -b & c & -d & e & -f
\end{array}\right]^{T} \longleftrightarrow\left[\begin{array}{llllll}
D & E & F & A & B & C
\end{array}\right]^{T}}
\end{aligned}
$$

Examples

$$
\begin{aligned}
{\left[\begin{array}{llllll}
a & b & c & d & e & f
\end{array}\right]^{T} } & \longleftrightarrow\left[\begin{array}{llllll}
A & B & C & D & E & F
\end{array}\right]^{T} \\
{\left[\begin{array}{llllll}
a & f & e & d & c & b
\end{array}\right]^{T} } & \longleftrightarrow\left[\begin{array}{llllll}
A & F & E & D & C & B
\end{array}\right]^{T} \\
{\left[\begin{array}{llllll}
d & e & f & a & b & c
\end{array}\right]^{T} } & \longleftrightarrow\left[\begin{array}{llllll}
A & -B & C & -D & E & -F
\end{array}\right]^{T} \\
{\left[\begin{array}{llllll}
a & -b & c & -d & e & -f
\end{array}\right]^{T} } & \longleftrightarrow\left[\begin{array}{llllll}
D & E & F & A & B & C
\end{array}\right]^{T} \\
{\left[\begin{array}{llllll}
2 a & b & -c & -2 d & -e & f
\end{array}\right]^{T} } &
\end{aligned}
$$

Examples

$$
\begin{aligned}
& {\left[\begin{array}{lllll}
a & b & c & d & e
\end{array}\right]^{T} \longleftrightarrow\left[\begin{array}{llllll}
A & B & C & D & E & F
\end{array}\right]^{T}} \\
& {\left[\begin{array}{llll}
a & f & e & d \\
c & b
\end{array}\right]^{T} \longleftrightarrow\left[\begin{array}{llllll}
A & F & E & D & C & B
\end{array}\right]^{T}} \\
& {\left[\begin{array}{llllll}
d e f l l l
\end{array}\right]^{T} \longleftrightarrow\left[\begin{array}{lllll}
A-B & C & -D & E & -F
\end{array}\right]^{T}} \\
& \left.\left[\begin{array}{lllll}
a & -b & c & -d & e
\end{array}\right]-f\right]^{T} \longleftrightarrow\left[\begin{array}{llllll}
D & E & F & A & B & C
\end{array}\right]^{T} \\
& {\left[\begin{array}{lllll}
2 a & b & -c & -2 d & -e
\end{array}\right]^{T} \longleftrightarrow[F+B A+C \quad B+D} \\
& C+E \quad D+F E+A]^{T}
\end{aligned}
$$

Examples

$$
\begin{aligned}
& {\left[\begin{array}{lllll}
a b l l l
\end{array}\right]^{T} \longleftrightarrow\left[\begin{array}{llllll}
A & B & C & D & E & F
\end{array}\right]^{T}} \\
& {\left[\begin{array}{llll}
a & f & e & d \\
c & b
\end{array}\right]^{T} \longleftrightarrow\left[\begin{array}{llllll}
A & F & E & D & C & B
\end{array}\right]^{T}} \\
& {\left[\begin{array}{llllll}
d e f l l l
\end{array}\right]^{T} \longleftrightarrow\left[\begin{array}{lllll}
A-B & C & -D & E & -F
\end{array}\right]^{T}} \\
& \left.\left[\begin{array}{lllll}
a & -b & c & -d & e
\end{array}\right]-f\right]^{T} \longleftrightarrow\left[\begin{array}{llllll}
D & E & F & A & B & C
\end{array}\right]^{T} \\
& {\left[\begin{array}{lllll}
2 a & b & -c & -2 d & -e
\end{array}\right]^{T} \longleftrightarrow[F+B A+C \quad B+D} \\
& C+E \quad D+F E+A]^{T} \\
& {\left[\begin{array}{llllll}
A & B & C & D & E & F
\end{array}\right]^{T}}
\end{aligned}
$$

Examples

$$
\begin{aligned}
& {\left[\begin{array}{lllll}
a b l l l
\end{array}\right]^{T} \longleftrightarrow\left[\begin{array}{llllll}
A & B & C & D & E & F
\end{array}\right]^{T}} \\
& {\left[\begin{array}{llll}
a & f & e & d \\
c & b
\end{array}\right]^{T} \longleftrightarrow\left[\begin{array}{llllll}
A & F & E & D & C & B
\end{array}\right]^{T}} \\
& {\left[\begin{array}{llllll}
d e f a b l
\end{array}\right]^{T} \longleftrightarrow\left[\begin{array}{lllll}
A-B & C & -D & E & -F
\end{array}\right]^{T}} \\
& \left.\left[\begin{array}{lllll}
a & -b & c & -d & e
\end{array}\right]-f\right]^{T} \longleftrightarrow\left[\begin{array}{llllll}
D & E & F & A & B & C
\end{array}\right]^{T} \\
& {\left[\begin{array}{lllll}
2 a & b & -c & -2 d & -e
\end{array}\right]^{T} \longleftrightarrow[F+B A+C B+D} \\
& C+E \quad D+F \quad E+A]^{T} \\
& {\left[\begin{array}{llllll}
A & B & C & D & E & F
\end{array}\right]^{T} \longleftrightarrow 6\left[\begin{array}{lllll}
a & f & e & d & c
\end{array}\right]^{T}}
\end{aligned}
$$

Symmetry Properties

Symmetry Properties

$\mathrm{x} \longleftrightarrow \mathbf{X}$

Symmetry Properties

$$
\begin{aligned}
\mathrm{x} & \longleftrightarrow \mathbf{X} \\
\mathbf{R X} & \longleftrightarrow \mathbf{R X}
\end{aligned}
$$

Symmetry Properties

$$
\begin{aligned}
\mathrm{x} & \longleftrightarrow \mathbf{X} \\
\mathbf{R x} & \longleftrightarrow \mathbf{R X} \\
\mathrm{x}^{*} & \longleftrightarrow \mathbf{R X}^{*}
\end{aligned}
$$

Symmetry Properties

$$
\begin{aligned}
\mathrm{x} & \longleftrightarrow \mathrm{X} \\
\mathrm{RX} & \longleftrightarrow \mathrm{RX} \\
\mathrm{x}^{*} & \longleftrightarrow \mathrm{RX}^{*}
\end{aligned}
$$

real-valued \longleftrightarrow circ. conjugate symmetric

Symmetry Properties

$$
\begin{aligned}
\mathrm{x} & \longleftrightarrow \mathbf{X} \\
\mathbf{R x} & \longleftrightarrow \mathbf{R X} \\
\mathbf{x}^{*} & \longleftrightarrow \mathbf{R X}^{*}
\end{aligned}
$$

real-valued \longleftrightarrow circ. conjugate symmetric circ. conjugate symmetric \longleftrightarrow real-valued

Symmetry Properties

$$
\begin{aligned}
\mathrm{x} & \longleftrightarrow \mathbf{X} \\
\mathbf{R x} & \longleftrightarrow \mathbf{R X} \\
\mathbf{x}^{*} & \longleftrightarrow \mathbf{R X}^{*}
\end{aligned}
$$

real-valued \longleftrightarrow circ. conjugate symmetric circ. conjugate symmetric \longleftrightarrow real-valued real and circ. symmetric \longleftrightarrow real and circ. symmetric

Symmetry Properties

$$
\begin{aligned}
\mathrm{x} & \longleftrightarrow \mathbf{X} \\
\mathbf{R x} & \longleftrightarrow \mathbf{R X} \\
\mathbf{x}^{*} & \longleftrightarrow \mathbf{R X}^{*}
\end{aligned}
$$

real-valued \longleftrightarrow circ. conjugate symmetric
circ. conjugate symmetric \longleftrightarrow real-valued
real and circ. symmetric \longleftrightarrow real and circ. symmetric

- Real values preserved by:

Symmetry Properties

$$
\begin{aligned}
\mathrm{x} & \longleftrightarrow \mathbf{X} \\
\mathbf{R x} & \longleftrightarrow \mathbf{R X} \\
\mathbf{x}^{*} & \longleftrightarrow \mathbf{R X}^{*}
\end{aligned}
$$

real-valued \longleftrightarrow circ. conjugate symmetric
circ. conjugate symmetric \longleftrightarrow real-valued
real and circ. symmetric \longleftrightarrow real and circ. symmetric

- Real values preserved by:

R

Symmetry Properties

$$
\begin{aligned}
\mathrm{x} & \longleftrightarrow \mathbf{X} \\
\mathbf{R x} & \longleftrightarrow \mathbf{R X} \\
\mathbf{x}^{*} & \longleftrightarrow \mathbf{R X}^{*}
\end{aligned}
$$

real-valued \longleftrightarrow circ. conjugate symmetric
circ. conjugate symmetric \longleftrightarrow real-valued
real and circ. symmetric \longleftrightarrow real and circ. symmetric

- Real values preserved by:
$\mathbf{R}, \quad \mathbf{P}^{m}$

Symmetry Properties

$$
\begin{aligned}
\mathrm{x} & \longleftrightarrow \mathbf{X} \\
\mathbf{R x} & \longleftrightarrow \mathbf{R X} \\
\mathbf{x}^{*} & \longleftrightarrow \mathbf{R X}^{*}
\end{aligned}
$$

real-valued \longleftrightarrow circ. conjugate symmetric
circ. conjugate symmetric \qquad
real and circ. symmetric \longleftrightarrow real and circ. symmetric

- Real values preserved by:

$$
\mathbf{R}, \quad \mathbf{P}^{m} \quad \text { and } \quad \mathbf{F}^{m}+\mathbf{F}^{-m}
$$

Symmetry Properties

$$
\begin{aligned}
\mathrm{x} & \longleftrightarrow \mathbf{X} \\
\mathbf{R x} & \longleftrightarrow \mathbf{R X} \\
\mathbf{x}^{*} & \longleftrightarrow \mathbf{R X}^{*}
\end{aligned}
$$

real-valued \longleftrightarrow circ. conjugate symmetric
circ. conjugate symmetric \longleftrightarrow real-valued
real and circ. symmetric \longleftrightarrow real and circ. symmetric

- Real values preserved by:

$$
\mathbf{R}, \quad \mathbf{P}^{m} \quad \text { and } \quad \mathbf{F}^{m}+\mathbf{F}^{-m}
$$

- Circular conjugate symmetry preserved by:

Symmetry Properties

$$
\begin{aligned}
\mathrm{x} & \longleftrightarrow \mathbf{X} \\
\mathbf{R x} & \longleftrightarrow \mathbf{R X} \\
\mathbf{x}^{*} & \longleftrightarrow \mathbf{R X}^{*}
\end{aligned}
$$

real-valued \longleftrightarrow circ. conjugate symmetric
circ. conjugate symmetric \longleftrightarrow real-valued
real and circ. symmetric \longleftrightarrow real and circ. symmetric

- Real values preserved by:

$$
\mathbf{R}, \quad \mathbf{P}^{m} \quad \text { and } \quad \mathbf{F}^{m}+\mathbf{F}^{-m}
$$

- Circular conjugate symmetry preserved by:

Symmetry Properties

$$
\begin{aligned}
\mathrm{x} & \longleftrightarrow \mathbf{X} \\
\mathbf{R x} & \longleftrightarrow \mathbf{R X} \\
\mathbf{x}^{*} & \longleftrightarrow \mathbf{R X}^{*}
\end{aligned}
$$

real-valued \longleftrightarrow circ. conjugate symmetric
circ. conjugate symmetric \longleftrightarrow real-valued
real and circ. symmetric \longleftrightarrow real and circ. symmetric

- Real values preserved by:

$$
\mathbf{R}, \quad \mathbf{P}^{m} \quad \text { and } \quad \mathbf{F}^{m}+\mathbf{F}^{-m}
$$

- Circular conjugate symmetry preserved by:
$\mathbf{R}, \quad \mathbf{F}^{m}$

Symmetry Properties

$$
\begin{aligned}
\mathrm{x} & \longleftrightarrow \mathbf{X} \\
\mathbf{R x} & \longleftrightarrow \mathbf{R X} \\
\mathrm{x}^{*} & \longleftrightarrow \mathbf{R X}^{*}
\end{aligned}
$$

real-valued \longleftrightarrow circ. conjugate symmetric
circ. conjugate symmetric \longleftrightarrow real-valued
real and circ. symmetric \longleftrightarrow real and circ. symmetric

- Real values preserved by:

$$
\mathbf{R}, \quad \mathbf{P}^{m} \quad \text { and } \quad \mathbf{F}^{m}+\mathbf{F}^{-m}
$$

- Circular conjugate symmetry preserved by:

$$
\mathbf{R}, \quad \mathbf{F}^{m} \quad \text { and } \quad \mathbf{P}^{m}+\mathbf{P}^{-m}
$$

