Lecture 14

Lecture 14

- Circular shift \mathbf{P}

Lecture 14

- Circular shift \mathbf{P}
- Circular reversal \mathbf{R}

Lecture 14

- Circular shift \mathbf{P}
- Circular reversal \mathbf{R}
- The diagonal matrix \mathbf{F}

Lecture 14

- Circular shift \mathbf{P}
- Circular reversal \mathbf{R}
- The diagonal matrix \mathbf{F}
- Application: "harvesting" a given DFT pair $\mathbf{x} \longleftrightarrow \mathbf{X}$

Lecture 14

- Circular shift \mathbf{P}
- Circular reversal \mathbf{R}
- The diagonal matrix \mathbf{F}
- Application: "harvesting" a given DFT pair $\mathbf{x} \longleftrightarrow \mathbf{X}$, i.e., deriving further pairs without full DFT computation

Circular Shift P

Circular Shift P

- Shift is downward:

$$
\left[\begin{array}{lllll}
0 & 1 & \ldots & N-2 & N-1
\end{array}\right]^{T}
$$

Circular Shift P

- Shift is downward:

$$
\left[\begin{array}{lllll}
0 & 1 & \ldots & N-2 & N-1
\end{array}\right]^{T} \rightarrow\left[\begin{array}{lllll}
N-1 & 0 & 1 & \ldots & N-2
\end{array}\right]^{T}
$$

Circular Shift P

- Shift is downward:

$$
\left[\begin{array}{lllll}
0 & 1 & \ldots & N-2 & N-1
\end{array}\right]^{T} \rightarrow\left[\begin{array}{lllll}
N-1 & 0 & 1 & \ldots & N-2
\end{array}\right]^{T}
$$

Circular Shift P

- Shift is downward:

$$
\left[\begin{array}{lllll}
0 & 1 & \ldots & N-2 & N-1
\end{array}\right]^{T} \rightarrow\left[\begin{array}{lllll}
N-1 & 0 & 1 & \ldots & N-2
\end{array}\right]^{T}
$$

$$
\mathbf{P}=\left[\begin{array}{ccccc}
0 & 0 & \ldots & 0 & 1 \\
1 & 0 & \ldots & 0 & 0 \\
0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & 0
\end{array}\right]
$$

Circular Shift P

- Shift is downward:

$$
\left[\begin{array}{lllll}
0 & 1 & \ldots & N-2 & N-1
\end{array}\right]^{T} \rightarrow\left[\begin{array}{lllll}
N-1 & 0 & 1 & \ldots & N-2
\end{array}\right]^{T}
$$

$$
\mathbf{P}=\left[\begin{array}{ccccc}
0 & 0 & \ldots & 0 & 1 \\
1 & 0 & \ldots & 0 & 0 \\
0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & 0
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
x_{1} \\
x_{2} \\
\vdots \\
x_{N-1}
\end{array}\right]
$$

Circular Reversal \mathbf{R}

Circular Reversal R

$$
-\left[\begin{array}{lllll}
0 & 1 & \ldots & N-2 & N-1
\end{array}\right]^{T}
$$

Circular Reversal \mathbf{R}

$$
\rightarrow\left[\begin{array}{lllllll}
0 & 1 & \ldots & N-2 & N-1
\end{array}\right]^{T} \rightarrow\left[\begin{array}{llllll}
0 & N-1 & N-2 & \ldots & 1
\end{array}\right]^{T}
$$

Circular Reversal \mathbf{R}

$$
\text { - }\left[\begin{array}{llllll}
0 & 1 & \ldots & N-2 & N-1
\end{array}\right]^{T} \rightarrow\left[\begin{array}{llllll}
0 & N-1 & N-2 & \ldots & 1
\end{array}\right]^{T}
$$

Circular Reversal \mathbf{R}

$$
\rightarrow\left[\begin{array}{llllll}
0 & 1 & \ldots & N-2 & N-1
\end{array}\right]^{T} \rightarrow\left[\begin{array}{llllll}
0 & N-1 & N-2 & \ldots & 1
\end{array}\right]^{T}
$$

$$
\mathbf{R}=\left[\begin{array}{ccccc}
1 & 0 & \ldots & 0 & 0 \\
0 & 0 & \ldots & 0 & 1 \\
0 & 0 & \ldots & 1 & 0 \\
\vdots & \vdots & \swarrow & \vdots & \vdots \\
0 & 1 & \ldots & 0 & 0
\end{array}\right]
$$

Circular Reversal \mathbf{R}

$$
\text { - }\left[\begin{array}{lllll}
0 & 1 & \ldots & N-2 & N-1
\end{array}\right]^{T} \rightarrow\left[\begin{array}{llllll}
0 & N-1 & N-2 & \ldots & 1
\end{array}\right]^{T}
$$

$$
\mathbf{R}=\left[\begin{array}{ccccc}
1 & 0 & \ldots & 0 & 0 \\
0 & 0 & \ldots & 0 & 1 \\
0 & 0 & \ldots & 1 & 0 \\
\vdots & \vdots & \swarrow & \vdots & \vdots \\
0 & 1 & \ldots & 0 & 0
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
x_{1} \\
x_{2} \\
\vdots \\
x_{N-1}
\end{array}\right]
$$

Circular Reversal \mathbf{R}

- $\left[\begin{array}{llll}0 & 1 & \ldots & N-2 \\ N-1\end{array}\right]^{T} \rightarrow\left[\begin{array}{llll}0 & N-1 & N-2 & \ldots\end{array}\right]^{T}$

$$
\mathbf{R}=\left[\begin{array}{ccccc}
1 & 0 & \ldots & 0 & 0 \\
0 & 0 & \ldots & 0 & 1 \\
0 & 0 & \ldots & 1 & 0 \\
\vdots & \vdots & \swarrow & \vdots & \vdots \\
0 & 1 & \ldots & 0 & 0
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
x_{1} \\
x_{2} \\
\vdots \\
x_{N-1}
\end{array}\right]
$$

- $\mathbf{R}^{-1}=\mathbf{R}^{T}=\mathbf{R}$

Circular Reversal \mathbf{R}

- $\left[\begin{array}{llll}0 & 1 & \ldots & N-2 \\ N-1\end{array}\right]^{T} \rightarrow\left[\begin{array}{llll}0 & N-1 & N-2 & \ldots\end{array}\right]^{T}$

$$
\mathbf{R}=\left[\begin{array}{ccccc}
1 & 0 & \ldots & 0 & 0 \\
0 & 0 & \ldots & 0 & 1 \\
0 & 0 & \ldots & 1 & 0 \\
\vdots & \vdots & \swarrow & \vdots & \vdots \\
0 & 1 & \ldots & 0 & 0
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
x_{1} \\
x_{2} \\
\vdots \\
x_{N-1}
\end{array}\right]
$$

- $\mathbf{R}^{-1}=\mathbf{R}^{T}=\mathbf{R} \quad\left(\right.$ Also: $\left.\mathbf{P}^{N}=\mathbf{I}\right)$

Modulation Matrix \mathbf{F}

Modulation Matrix F

- With $z=v=e^{j(2 \pi / N)}$,

Modulation Matrix F

- With $z=v=e^{j(2 \pi / N)}$,

$$
\mathbf{F}=\left[\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
0 & z & 0 & \ldots & 0 \\
0 & 0 & z^{2} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & z^{N-1}
\end{array}\right]
$$

Modulation Matrix F

- With $z=v=e^{j(2 \pi / N)}$,

$$
\mathbf{F}=\left[\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
0 & z & 0 & \ldots & 0 \\
0 & 0 & z^{2} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & z^{N-1}
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
x_{1} \\
x_{2} \\
\vdots \\
x_{N-1}
\end{array}\right]
$$

Modulation Matrix F

- With $z=v=e^{j(2 \pi / N)}$,

$$
\mathbf{F}=\left[\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
0 & z & 0 & \ldots & 0 \\
0 & 0 & z^{2} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & z^{N-1}
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
x_{1} \\
x_{2} \\
\vdots \\
x_{N-1}
\end{array}\right]
$$

- In Fx: x and $\mathbf{v}^{(1)}$ are multiplied entry-by-entry

Modulation Matrix F

- With $z=v=e^{j(2 \pi / N)}$,

$$
\mathbf{F}=\left[\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
0 & z & 0 & \ldots & 0 \\
0 & 0 & z^{2} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & z^{N-1}
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
x_{1} \\
x_{2} \\
\vdots \\
x_{N-1}
\end{array}\right]
$$

- In $\mathbf{F x}$: x and $\mathbf{v}^{(1)}$ are multiplied entry-by-entry
- $\mathbf{F}^{k} \mathbf{x}$: entry-wise product of \mathbf{x} and $k^{\text {th }}$ Fourier sinusoid

Modulation Matrix F

- With $z=v=e^{j(2 \pi / N)}$,

$$
\mathbf{F}=\left[\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
0 & z & 0 & \ldots & 0 \\
0 & 0 & z^{2} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & z^{N-1}
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
x_{1} \\
x_{2} \\
\vdots \\
x_{N-1}
\end{array}\right]
$$

- In $\mathbf{F x}$: x and $\mathbf{v}^{(1)}$ are multiplied entry-by-entry
- $\mathbf{F}^{k} \mathbf{x}$: entry-wise product of \mathbf{x} and $k^{\text {th }}$ Fourier sinusoid
- $\mathbf{F}^{N}=\mathbf{I}$

Example

Example

- If

$$
\mathbf{x}=\left[\begin{array}{llllll}
0 & 1 & 2 & 3 & 4 & 5
\end{array}\right]^{T}
$$

Example

- If

$$
\mathbf{x}=\left[\begin{array}{llllll}
0 & 1 & 2 & 3 & 4 & 5
\end{array}\right]^{T}
$$

express each of the following using $\mathbf{P}, \mathbf{R}, \mathbf{F}$ and \mathbf{x}

Example

- If

$$
\mathbf{x}=\left[\begin{array}{llllll}
0 & 1 & 2 & 3 & 4 & 5
\end{array}\right]^{T}
$$

express each of the following using $\mathbf{P}, \mathbf{R}, \mathbf{F}$ and \mathbf{x}

$$
\mathbf{x}^{(1)}=\left[\begin{array}{llllll}
4 & 5 & 0 & 1 & 2 & 3
\end{array}\right]^{T}
$$

Example

- If

$$
\mathbf{x}=\left[\begin{array}{llllll}
0 & 1 & 2 & 3 & 4 & 5
\end{array}\right]^{T}
$$

express each of the following using $\mathbf{P}, \mathbf{R}, \mathbf{F}$ and \mathbf{x}

$$
\left.\begin{array}{rl}
\text { - } & \mathbf{x}^{(1)} \\
=\mathbf{x}^{(2)} & =\left[\begin{array}{llllll}
4 & 5 & 0 & 1 & 2 & 3
\end{array}\right]^{T} \\
4 & 3
\end{array} 2 \begin{array}{llll}
& 1 & 0 & 5
\end{array}\right]^{T}
$$

Example

- If

$$
\mathbf{x}=\left[\begin{array}{llllll}
0 & 1 & 2 & 3 & 4 & 5
\end{array}\right]^{T}
$$

express each of the following using $\mathbf{P}, \mathbf{R}, \mathbf{F}$ and \mathbf{x}

- $\mathbf{x}^{(1)}=\left[\begin{array}{llllll}4 & 5 & 0 & 1 & 2 & 3\end{array}\right]^{T}$
- $\mathbf{x}^{(2)}=\left[\begin{array}{llllll}4 & 3 & 2 & 1 & 0 & 5\end{array}\right]^{T}$
- $\mathbf{x}^{(3)}=\left[\begin{array}{llllll}0 & 6 & 6 & 6 & 6 & 6\end{array}\right]^{T}$

Example

- If

$$
\mathbf{x}=\left[\begin{array}{llllll}
0 & 1 & 2 & 3 & 4 & 5
\end{array}\right]^{T}
$$

express each of the following using $\mathbf{P}, \mathbf{R}, \mathbf{F}$ and \mathbf{x}

- $\mathbf{x}^{(1)}=\left[\begin{array}{llllll}4 & 5 & 0 & 1 & 2 & 3\end{array}\right]^{T}$
- $\mathbf{x}^{(2)}=\left[\begin{array}{llllll}4 & 3 & 2 & 1 & 0 & 5\end{array}\right]^{T}$
- $\mathbf{x}^{(3)}=\left[\begin{array}{llllll}0 & 6 & 6 & 6 & 6 & 6\end{array}\right]^{T}$
- $\mathbf{x}^{(4)}=\left[\begin{array}{llllll}0 & -4 & -2 & 0 & 2 & 4\end{array}\right]^{T}$

Example

- If

$$
\mathbf{x}=\left[\begin{array}{llllll}
0 & 1 & 2 & 3 & 4 & 5
\end{array}\right]^{T}
$$

express each of the following using $\mathbf{P}, \mathbf{R}, \mathbf{F}$ and \mathbf{x}

- $\mathbf{x}^{(1)}=\left[\begin{array}{llllll}4 & 5 & 0 & 1 & 2 & 3\end{array}\right]^{T}$
- $\mathbf{x}^{(2)}=\left[\begin{array}{llllll}4 & 3 & 2 & 1 & 0 & 5\end{array}\right]^{T}$
- $\mathbf{x}^{(3)}=\left[\begin{array}{llllll}0 & 6 & 6 & 6 & 6 & 6\end{array}\right]^{T}$
- $\mathbf{x}^{(4)}=\left[\begin{array}{llllll}0 & -4 & -2 & 0 & 2 & 4\end{array}\right]^{T}$
- $\mathbf{x}^{(5)}=\left[\begin{array}{llllll}0 & -1 & 2 & -3 & 4 & -5\end{array}\right]^{T}$

Example

- If

$$
\mathbf{x}=\left[\begin{array}{llllll}
0 & 1 & 2 & 3 & 4 & 5
\end{array}\right]^{T}
$$

express each of the following using $\mathbf{P}, \mathbf{R}, \mathbf{F}$ and \mathbf{x}

- $\mathbf{x}^{(1)}=\left[\begin{array}{llllll}4 & 5 & 0 & 1 & 2 & 3\end{array}\right]^{T}$
- $\mathbf{x}^{(2)}=\left[\begin{array}{llllll}4 & 3 & 2 & 1 & 0 & 5\end{array}\right]^{T}$
- $\mathbf{x}^{(3)}=\left[\begin{array}{llllll}0 & 6 & 6 & 6 & 6 & 6\end{array}\right]^{T}$
- $\mathbf{x}^{(4)}=\left[\begin{array}{llllll}0 & -4 & -2 & 0 & 2 & 4\end{array}\right]^{T}$
- $\mathbf{x}^{(5)}=\left[\begin{array}{llllll}0 & -1 & 2 & -3 & 4 & -5\end{array}\right]^{T}$
- $\mathbf{x}^{(6)}=\left[\begin{array}{llllll}0 & 2 & 0 & 6 & 0 & 10\end{array}\right]^{T}$

Some Identities

- $\mathrm{W}=\mathrm{V}^{*}=\mathrm{VR}=\mathrm{RV}$
- $\mathrm{V}=\mathrm{W}^{*}=\mathrm{WR}=\mathrm{RW}$

