Discrete Fourier transform (DFT) and its inverse

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 Discrete Fourier transform (DFT) and its inverse: terminology and notation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Discrete Fourier transform (DFT) and its inverse: terminology and notation
- Interpretation of DFT (spectrum)

- Discrete Fourier transform (DFT) and its inverse: terminology and notation
- Interpretation of DFT (spectrum)
- DFT of a real-valued signal

- Discrete Fourier transform (DFT) and its inverse: terminology and notation
- Interpretation of DFT (spectrum)
- > DFT of a real-valued signal: characteristic property

- Discrete Fourier transform (DFT) and its inverse: terminology and notation
- Interpretation of DFT (spectrum)
- DFT of a real-valued signal: characteristic property (conjugate circular symmetry)

- Discrete Fourier transform (DFT) and its inverse: terminology and notation
- Interpretation of DFT (spectrum)
- DFT of a real-valued signal: characteristic property (conjugate circular symmetry)

Magnitude and phase spectra

- Discrete Fourier transform (DFT) and its inverse: terminology and notation
- Interpretation of DFT (spectrum)
- DFT of a real-valued signal: characteristic property (conjugate circular symmetry)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Magnitude and phase spectra; symmetries

- Discrete Fourier transform (DFT) and its inverse: terminology and notation
- Interpretation of DFT (spectrum)
- DFT of a real-valued signal: characteristic property (conjugate circular symmetry)
- Magnitude and phase spectra; symmetries
- Synthesis of a real-valued signal using its magnitude and phase spectra

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• V: $N \times N$ matrix with orthogonal columns

- \blacktriangleright $\mathbf{V}:~N\times N$ matrix with orthogonal columns
- $k^{\rm th}$ column of V: complex sinusoid of frequency $k(2\pi/N)$

- \blacktriangleright **V**: $N \times N$ matrix with orthogonal columns
- $k^{\rm th}$ column of ${\bf V}:$ complex sinusoid of frequency $k(2\pi/N)$

•
$$V_{nk} = z^{nk}$$
, where $z = e^{j(2\pi/N)}$

- V: $N \times N$ matrix with orthogonal columns
- $\blacktriangleright \ k^{\rm th}$ column of ${\bf V}:$ complex sinusoid of frequency $k(2\pi/N)$

•
$$V_{nk} = z^{nk}$$
, where $z = e^{j(2\pi/N)}$ (= v in notes)

- V: $N \times N$ matrix with orthogonal columns
- $k^{\rm th}$ column of V: complex sinusoid of frequency $k(2\pi/N)$

►
$$V_{nk} = z^{nk}$$
, where $z = e^{j(2\pi/N)}$ (= v in notes)
► $N = 8$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Synthesis Equation:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• *Synthesis* Equation:

$$\mathbf{s} = \mathbf{V}\mathbf{c}$$

• Synthesis Equation:

$$\mathbf{s} = \mathbf{V}\mathbf{c} = \frac{1}{N}\mathbf{V}\mathbf{S}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Synthesis Equation:

$$\mathbf{s} = \mathbf{V}\mathbf{c} = \frac{1}{N}\mathbf{V}\mathbf{S}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 $\mathbf{S} = N\mathbf{c}$ is the discrete Fourier transform (DFT) of \mathbf{s}

Synthesis Equation:

$$\mathbf{s} = \mathbf{V}\mathbf{c} = \frac{1}{N}\mathbf{V}\mathbf{S}$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

 $\mathbf{S}=N\mathbf{c}$ is the discrete Fourier transform (DFT) of $\mathbf{s};$ also, the spectrum of \mathbf{s}

• *Synthesis* Equation:

$$\mathbf{s} = \mathbf{V}\mathbf{c} = \frac{1}{N}\mathbf{V}\mathbf{S}$$

 $\mathbf{S}=N\mathbf{c}$ is the discrete Fourier transform (DFT) of $\mathbf{s};$ also, the spectrum of \mathbf{s}

• Analysis Equation:

Synthesis Equation:

$$\mathbf{s} = \mathbf{V}\mathbf{c} = \frac{1}{N}\mathbf{V}\mathbf{S}$$

 $\mathbf{S}=N\mathbf{c}$ is the discrete Fourier transform (DFT) of $\mathbf{s};$ also, the spectrum of \mathbf{s}

• Analysis Equation:

$$\mathbf{S} = \mathbf{V}^H \mathbf{s}$$

Synthesis Equation:

$$\mathbf{s} = \mathbf{V}\mathbf{c} = \frac{1}{N}\mathbf{V}\mathbf{S}$$

 $\mathbf{S}=N\mathbf{c}$ is the discrete Fourier transform (DFT) of $\mathbf{s};$ also, the spectrum of \mathbf{s}

• Analysis Equation:

$$\mathbf{S} = \mathbf{V}^H \mathbf{s} = \mathbf{V}^* \mathbf{s}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Synthesis Equation:

$$\mathbf{s} = \mathbf{V}\mathbf{c} = \frac{1}{N}\mathbf{V}\mathbf{S}$$

 $\mathbf{S}=N\mathbf{c}$ is the discrete Fourier transform (DFT) of $\mathbf{s};$ also, the spectrum of \mathbf{s}

• Analysis Equation:

$$\mathbf{S} = \mathbf{V}^H \mathbf{s} = \mathbf{V}^* \mathbf{s}$$

$$\bullet \qquad ({\sf Time}) \ {\bf s} \ \longleftrightarrow \ {\bf S} \ ({\sf Frequency})$$

Synthesis Equation:

$$\mathbf{s} = \mathbf{V}\mathbf{c} = \frac{1}{N}\mathbf{V}\mathbf{S}$$

 $\mathbf{S}=N\mathbf{c}$ is the discrete Fourier transform (DFT) of $\mathbf{s};$ also, the spectrum of \mathbf{s}

Analysis Equation:

$$\mathbf{S} = \mathbf{V}^H \mathbf{s} = \mathbf{V}^* \mathbf{s}$$

