Lecture 13

Lecture 13

- Discrete Fourier transform (DFT) and its inverse

Lecture 13

- Discrete Fourier transform (DFT) and its inverse: terminology and notation

Lecture 13

- Discrete Fourier transform (DFT) and its inverse: terminology and notation
- Interpretation of DFT (spectrum)

Lecture 13

- Discrete Fourier transform (DFT) and its inverse: terminology and notation
- Interpretation of DFT (spectrum)
- DFT of a real-valued signal

Lecture 13

- Discrete Fourier transform (DFT) and its inverse: terminology and notation
- Interpretation of DFT (spectrum)
- DFT of a real-valued signal: characteristic property

Lecture 13

- Discrete Fourier transform (DFT) and its inverse: terminology and notation
- Interpretation of DFT (spectrum)
- DFT of a real-valued signal: characteristic property (conjugate circular symmetry)

Lecture 13

- Discrete Fourier transform (DFT) and its inverse: terminology and notation
- Interpretation of DFT (spectrum)
- DFT of a real-valued signal: characteristic property (conjugate circular symmetry)
- Magnitude and phase spectra

Lecture 13

- Discrete Fourier transform (DFT) and its inverse: terminology and notation
- Interpretation of DFT (spectrum)
- DFT of a real-valued signal: characteristic property (conjugate circular symmetry)
- Magnitude and phase spectra; symmetries

Lecture 13

- Discrete Fourier transform (DFT) and its inverse: terminology and notation
- Interpretation of DFT (spectrum)
- DFT of a real-valued signal: characteristic property (conjugate circular symmetry)
- Magnitude and phase spectra; symmetries
- Synthesis of a real-valued signal using its magnitude and phase spectra

Fourier Sinusoids and Their Frequencies

Fourier Sinusoids and Their Frequencies

- V: $N \times N$ matrix with orthogonal columns

Fourier Sinusoids and Their Frequencies

- V: $N \times N$ matrix with orthogonal columns
- $k^{\text {th }}$ column of \mathbf{V} : complex sinusoid of frequency $k(2 \pi / N)$

Fourier Sinusoids and Their Frequencies

- V: $N \times N$ matrix with orthogonal columns
- $k^{\text {th }}$ column of \mathbf{V} : complex sinusoid of frequency $k(2 \pi / N)$
- $V_{n k}=z^{n k}$, where $z=e^{j(2 \pi / N)}$

Fourier Sinusoids and Their Frequencies

- V: $N \times N$ matrix with orthogonal columns
- $k^{\text {th }}$ column of \mathbf{V} : complex sinusoid of frequency $k(2 \pi / N)$
- $V_{n k}=z^{n k}$, where $z=e^{j(2 \pi / N)}(=v$ in notes $)$

Fourier Sinusoids and Their Frequencies

- V: $N \times N$ matrix with orthogonal columns
- $k^{\text {th }}$ column of \mathbf{V} : complex sinusoid of frequency $k(2 \pi / N)$
- $V_{n k}=z^{n k}$, where $z=e^{j(2 \pi / N)}(=v$ in notes $)$
- $N=8$

Synthesis and Analysis Equations

Synthesis and Analysis Equations

- Synthesis Equation:

Synthesis and Analysis Equations

- Synthesis Equation:

$$
\mathbf{s}=\mathbf{V} \mathbf{c}
$$

Synthesis and Analysis Equations

- Synthesis Equation:

$$
\mathbf{s}=\mathbf{V c}=\frac{1}{N} \mathbf{V S}
$$

Synthesis and Analysis Equations

- Synthesis Equation:

$$
\mathbf{s}=\mathbf{V c}=\frac{1}{N} \mathbf{V S}
$$

$\mathbf{S}=N \mathbf{c}$ is the discrete Fourier transform (DFT) of \mathbf{s}

Synthesis and Analysis Equations

- Synthesis Equation:

$$
\mathbf{s}=\mathbf{V c}=\frac{1}{N} \mathbf{V S}
$$

$\mathbf{S}=N \mathbf{c}$ is the discrete Fourier transform (DFT) of \mathbf{s}; also, the spectrum of \mathbf{s}

Synthesis and Analysis Equations

- Synthesis Equation:

$$
\mathbf{s}=\mathbf{V c}=\frac{1}{N} \mathbf{V S}
$$

$\mathbf{S}=N \mathbf{c}$ is the discrete Fourier transform (DFT) of \mathbf{s}; also, the spectrum of \mathbf{s}

- Analysis Equation:

Synthesis and Analysis Equations

- Synthesis Equation:

$$
\mathbf{s}=\mathbf{V c}=\frac{1}{N} \mathbf{V S}
$$

$\mathbf{S}=N \mathbf{c}$ is the discrete Fourier transform (DFT) of \mathbf{s}; also, the spectrum of \mathbf{s}

- Analysis Equation:

$$
\mathbf{S}=\mathbf{V}^{H} \mathbf{S}
$$

Synthesis and Analysis Equations

- Synthesis Equation:

$$
\mathbf{s}=\mathbf{V c}=\frac{1}{N} \mathbf{V S}
$$

$\mathbf{S}=N \mathbf{c}$ is the discrete Fourier transform (DFT) of \mathbf{s}; also, the spectrum of \mathbf{s}

- Analysis Equation:

$$
\mathbf{S}=\mathbf{V}^{H} \mathbf{s}=\mathbf{V}^{*} \mathbf{s}
$$

Synthesis and Analysis Equations

- Synthesis Equation:

$$
\mathrm{s}=\mathrm{Vc}=\frac{1}{N} \mathrm{VS}
$$

$\mathrm{S}=N \mathrm{c}$ is the discrete Fourier transform (DFT) of s ; also, the spectrum of s

- Analysis Equation:

$$
\mathbf{S}=\mathbf{V}^{H} \mathbf{s}=\mathbf{V}^{*} \mathbf{s}
$$

(Time) $\mathrm{s} \longleftrightarrow \mathrm{S}$ (Frequency)

Synthesis and Analysis Equations

- Synthesis Equation:

$$
\mathrm{s}=\mathrm{Vc}=\frac{1}{N} \mathrm{VS}
$$

$\mathrm{S}=N \mathrm{c}$ is the discrete Fourier transform (DFT) of s ; also, the spectrum of s

- Analysis Equation:

$$
\mathbf{S}=\mathbf{V}^{H} \mathbf{S}=\mathbf{V}^{*} \mathbf{s}
$$

(Time) s $\longleftrightarrow \mathbf{S}$ (Frequency)

- $N=8$

