Last Example

$${f v}^{(0)} {f v}^{(1)} {f v}^{(2)} {f v}^{(3)}$$

$$\mathbf{V} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & j & -1 & -j \\ 1 & -1 & 1 & -1 \\ 1 & -j & -1 & j \end{bmatrix}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Last Example

$$\mathbf{V}^{(0)} \quad \mathbf{v}^{(1)} \quad \mathbf{v}^{(2)} \quad \mathbf{v}^{(3)}$$
$$\mathbf{V} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & j & -1 & -j \\ 1 & -1 & 1 & -1 \\ 1 & -j & -1 & j \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 2 \\ 3 \end{bmatrix}$$
Time *n*

Last Example

$$\mathbf{V}^{(0)} \ \mathbf{v}^{(1)} \ \mathbf{v}^{(2)} \ \mathbf{v}^{(3)}$$
$$\mathbf{V} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & j & -1 & -j \\ 1 & -1 & 1 & -1 \\ 1 & -j & -1 & j \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 2 \\ 3 \end{bmatrix}$$
Time n

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Columns of V are orthogonal, each with $(norm)^2 = 1$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

The $N \times N$ Matrix V

Generalization of the previous example (in which N = 4).

The $N \times N$ Matrix V

Generalization of the previous example (in which N = 4).

 \blacktriangleright Each column of ${\bf V}$ is a complex sinusoid in discrete time.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Generalization of the previous example (in which N = 4).

► Each column of V is a complex sinusoid in discrete time.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Column frequencies are uniformly spaced over $[0, 2\pi)$.

Generalization of the previous example (in which N = 4).

► Each column of V is a complex sinusoid in discrete time.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Column frequencies are uniformly spaced over $[0, 2\pi)$.
- Thus

$$V_{nk} = e^{j\omega n}$$

Generalization of the previous example (in which N = 4).

- ► Each column of V is a complex sinusoid in discrete time.
- \blacktriangleright Column frequencies are uniformly spaced over $\left[0,2\pi\right).$
- Thus

$$V_{nk} = e^{j\omega n}$$
, where $\omega = k \cdot 2\pi/N$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Generalization of the previous example (in which N = 4).

- ► Each column of V is a complex sinusoid in discrete time.
- \blacktriangleright Column frequencies are uniformly spaced over $\left[0,2\pi\right).$
- Thus

 $V_{nk} = e^{j\omega n}$, where $\omega = k \cdot 2\pi/N$

► Finally, the columns of V are orthogonal

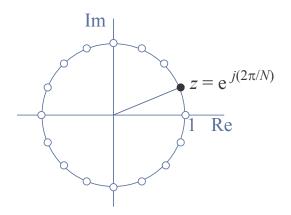
Generalization of the previous example (in which N = 4).

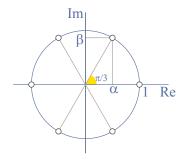
- ► Each column of V is a complex sinusoid in discrete time.
- \blacktriangleright Column frequencies are uniformly spaced over $\left[0,2\pi\right).$
- Thus

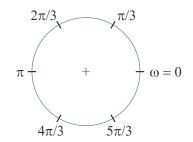
$$V_{nk} = e^{j\omega n}$$
, where $\omega = k \cdot 2\pi/N$

Finally, the columns of V are orthogonal with $\|\cdot\|^2 = N$:

The $N \times N$ Matrix V


Generalization of the previous example (in which N = 4).


- ► Each column of V is a complex sinusoid in discrete time.
- Column frequencies are uniformly spaced over $[0, 2\pi)$.
- Thus


 $V_{nk} = e^{j\omega n}$, where $\omega = k \cdot 2\pi/N$

Finally, the columns of V are orthogonal with $\|\cdot\|^2 = N$:

$$\mathbf{V}^H \mathbf{V} = N \mathbf{I}$$

