Last Example

$$
\begin{gathered}
\mathbf{v}^{(0)} \mathbf{v}^{(1)} \\
\mathbf{V}= \\
\mathbf{v}^{(2)} \\
\mathbf{v}^{(3)} \\
{\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & j & -1 & -j \\
1 & -1 & 1 & -1 \\
1 & -j & -1 & j
\end{array}\right]}
\end{gathered}
$$

Last Example

$$
\left.\begin{array}{c}
\mathbf{v}^{(0)} \\
\mathbf{v}^{(1)}
\end{array} \mathbf{v}^{(2)} \mathbf{v}^{(3)} .\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & j & -1 & -j \\
1 & -1 & 1 & -1 \\
1 & -j & -1 & j
\end{array}\right] \quad \begin{array}{l}
0 \\
1 \\
2 \\
3
\end{array}\right\} \text { Time } n
$$

Last Example

$$
\left.\left.\begin{array}{c}
\mathbf{v}^{(0)} \mathbf{v}^{(1)} \\
\mathbf{V} \\
\mathbf{V} \\
\mathbf{V} \\
\hline
\end{array} \begin{array}{rrrr}
1 & \mathbf{v}^{(3)} \\
1 & 1 & 1 & 1 \\
1 & -1 & -1 & -j \\
1 & -j & -1 & -1 \\
1
\end{array}\right] \quad \begin{array}{l}
0 \\
1 \\
2 \\
3
\end{array}\right\} \text { Time } n
$$

Columns of \mathbf{V} are orthogonal, each with (norm) ${ }^{2}=1$

The $N \times N$ Matrix \mathbf{V}

The $N \times N$ Matrix \mathbf{V}

Generalization of the previous example (in which $N=4$).

The $N \times N$ Matrix \mathbf{V}

Generalization of the previous example (in which $N=4$).

- Each column of \mathbf{V} is a complex sinusoid in discrete time.

The $N \times N$ Matrix \mathbf{V}

Generalization of the previous example (in which $N=4$).

- Each column of V is a complex sinusoid in discrete time.
- Column frequencies are uniformly spaced over $[0,2 \pi)$.

The $N \times N$ Matrix \mathbf{V}

Generalization of the previous example (in which $N=4$).

- Each column of V is a complex sinusoid in discrete time.
- Column frequencies are uniformly spaced over $[0,2 \pi)$.
- Thus

$$
V_{n k}=e^{j \omega n}
$$

The $N \times N$ Matrix \mathbf{V}

Generalization of the previous example (in which $N=4$).

- Each column of V is a complex sinusoid in discrete time.
- Column frequencies are uniformly spaced over $[0,2 \pi)$.
- Thus

$$
V_{n k}=e^{j \omega n}, \quad \text { where } \quad \omega=k \cdot 2 \pi / N
$$

The $N \times N$ Matrix \mathbf{V}

Generalization of the previous example (in which $N=4$).

- Each column of V is a complex sinusoid in discrete time.
- Column frequencies are uniformly spaced over $[0,2 \pi)$.
- Thus

$$
V_{n k}=e^{j \omega n}, \quad \text { where } \quad \omega=k \cdot 2 \pi / N
$$

- Finally, the columns of V are orthogonal

The $N \times N$ Matrix \mathbf{V}

Generalization of the previous example (in which $N=4$).

- Each column of V is a complex sinusoid in discrete time.
- Column frequencies are uniformly spaced over $[0,2 \pi)$.
- Thus

$$
V_{n k}=e^{j \omega n}, \quad \text { where } \quad \omega=k \cdot 2 \pi / N
$$

- Finally, the columns of \mathbf{V} are orthogonal with $\|\cdot\|^{2}=N$:

The $N \times N$ Matrix \mathbf{V}

Generalization of the previous example (in which $N=4$).

- Each column of V is a complex sinusoid in discrete time.
- Column frequencies are uniformly spaced over $[0,2 \pi)$.
- Thus

$$
V_{n k}=e^{j \omega n}, \quad \text { where } \quad \omega=k \cdot 2 \pi / N
$$

- Finally, the columns of \mathbf{V} are orthogonal with $\|\cdot\|^{2}=N$:

$$
\mathbf{V}^{H} \mathbf{V}=N \mathbf{I}
$$

