Fact:

Fact:
If the $m \times m$ matrix \mathbf{V} is invertible,

Fact:

If the $m \times m$ matrix \mathbf{V} is invertible, then any $\mathbf{s} \in \mathbb{R}^{m}$ can be expressed as a linear combination of the columns of \mathbf{V}

Fact:

If the $m \times m$ matrix \mathbf{V} is invertible, then any $\mathbf{s} \in \mathbb{R}^{m}$ can be expressed as a linear combination of the columns of \mathbf{V} :

$$
\mathbf{s}=\mathbf{V c}
$$

Fact:

If the $m \times m$ matrix \mathbf{V} is invertible, then any $\mathbf{s} \in \mathbb{R}^{m}$ can be expressed as a linear combination of the columns of \mathbf{V} :

$$
\mathbf{s}=\mathbf{V c}
$$

Now:

Fact:

If the $m \times m$ matrix \mathbf{V} is invertible, then any $\mathbf{s} \in \mathbb{R}^{m}$ can be expressed as a linear combination of the columns of \mathbf{V} :

$$
\mathbf{s}=\mathbf{V c}
$$

Now:
Suppose $m-n$ columns of \mathbf{V} are deleted, resulting in a tall $m \times n$ matrix.

Fact:

If the $m \times m$ matrix \mathbf{V} is invertible, then any $\mathbf{s} \in \mathbb{R}^{m}$ can be expressed as a linear combination of the columns of \mathbf{V} :

$$
\mathbf{s}=\mathbf{V c}
$$

Now:
Suppose $m-n$ columns of \mathbf{V} are deleted, resulting in a tall $m \times n$ matrix.
Vc can no longer represent every $\mathbf{s} \in \mathbb{R}^{m}$.

Error norm $\|\mathbf{s}-\hat{\mathbf{s}}\|$

Error norm $\|\mathbf{s}-\hat{\mathbf{s}}\|$ is minimized

Error norm $\|\mathbf{s}-\hat{\mathbf{s}}\|$ is minimized if $\hat{\mathbf{s}}$ is the projection of \mathbf{s}

Error norm $\|\mathbf{s}-\hat{\mathbf{s}}\|$ is minimized if $\hat{\mathbf{s}}$ is the projection of \mathbf{s} onto the subspace generated by $\mathbf{v}^{(1)}, \ldots, \mathbf{v}^{(n)}$:

Error norm $\|\mathbf{s}-\hat{\mathbf{s}}\|$ is minimized if $\hat{\mathbf{s}}$ is the projection of \mathbf{s} onto the subspace generated by $\mathbf{v}^{(1)}, \ldots, \mathbf{v}^{(n)}$:

$$
\mathbf{s}-\hat{\mathbf{s}} \perp \mathbf{v}^{(1)}, \ldots, \mathbf{v}^{(n)}
$$

The Orthogonal case

The Orthogonal case
If \mathbf{V} is $m \times m$ with orthogonal columns,

The Orthogonal case
If \mathbf{V} is $m \times m$ with orthogonal columns, then any $\mathbf{s} \in \mathbb{R}^{m}$ is the sum of its projections onto the columns of \mathbf{V}.

The Orthogonal case
If \mathbf{V} is $m \times m$ with orthogonal columns, then any $\mathbf{s} \in \mathbb{R}^{m}$ is the sum of its projections onto the columns of \mathbf{V}.

The Orthogonal case
If \mathbf{V} is $m \times m$ with orthogonal columns, then any $\mathbf{s} \in \mathbb{R}^{m}$ is the sum of its projections onto the columns of \mathbf{V}.

