Fact: If the $m \times m$ matrix V is invertible,

If the $m \times m$ matrix V is invertible, then any $s \in \mathbb{R}^m$ can be expressed as a linear combination of the columns of V

If the $m \times m$ matrix V is invertible, then any $s \in \mathbb{R}^m$ can be expressed as a linear combination of the columns of V:

$$s = Vc$$

If the $m \times m$ matrix V is invertible, then any $s \in \mathbb{R}^m$ can be expressed as a linear combination of the columns of V:

$$s = Vc$$

Now:

If the $m \times m$ matrix V is invertible, then any $s \in \mathbb{R}^m$ can be expressed as a linear combination of the columns of V:

$$s = Vc$$

Now:

Suppose m - n columns of V are deleted, resulting in a tall $m \times n$ matrix.

If the $m \times m$ matrix V is invertible, then any $s \in \mathbb{R}^m$ can be expressed as a linear combination of the columns of V :

$$s = Vc$$

Now:

Suppose m - n columns of V are deleted, resulting in a tall $m \times n$ matrix.

Vc can no longer represent every $\mathbf{s} \in \mathbb{R}^m$.

 $\mathsf{Error} \ \mathsf{norm} \ \left\| \mathbf{s} - \mathbf{\hat{s}} \right\|$

Error norm $\|\mathbf{s} - \mathbf{\hat{s}}\|$ is minimized

Error norm $\|\mathbf{s}-\hat{\mathbf{s}}\|$ is minimized if $\hat{\mathbf{s}}$ is the projection of \mathbf{s}

Error norm $\|\mathbf{s} - \hat{\mathbf{s}}\|$ is minimized if $\hat{\mathbf{s}}$ is the projection of \mathbf{s} onto the subspace generated by $\mathbf{v}^{(1)}, \ldots, \mathbf{v}^{(n)}$:

Error norm $\|\mathbf{s} - \hat{\mathbf{s}}\|$ is minimized if $\hat{\mathbf{s}}$ is the projection of \mathbf{s} onto the subspace generated by $\mathbf{v}^{(1)}, \ldots, \mathbf{v}^{(n)}$:

$$\mathbf{s} - \mathbf{\hat{s}} \perp \mathbf{v}^{(1)}, \dots, \mathbf{v}^{(n)}$$

The Orthogonal case If V is $m \times m$ with orthogonal columns,

If V is $m \times m$ with orthogonal columns, then any $s \in \mathbb{R}^m$ is the sum of its projections onto the columns of V.

If V is $m \times m$ with orthogonal columns, then any $s \in \mathbb{R}^m$ is the sum of its projections onto the columns of V.

If V is $m \times m$ with orthogonal columns, then any $s \in \mathbb{R}^m$ is the sum of its projections onto the columns of V.

