Lecture 11

Lecture 11

► Signal representation and approximation using orthogonal reference vectors

Lecture 11

- ► Signal representation and approximation using orthogonal reference vectors
- Inner products and projections: extension to complex vectors

$$\|\mathbf{v}\|^2 \stackrel{\text{def}}{=} \sum_{i=1}^m |v_i|^2$$

$$\|\mathbf{v}\|^2 \stackrel{\text{def}}{=} \sum_{i=1}^m |v_i|^2 = \sum_{i=1}^m v_i^* v_i$$

$$\|\mathbf{v}\|^2 \stackrel{\text{def}}{=} \sum_{i=1}^m |v_i|^2 = \sum_{i=1}^m v_i^* v_i = (\mathbf{v}^*)^T \mathbf{v}$$

ightharpoonup For $\mathbf{v} \in \mathbf{C}^m$,

$$\|\mathbf{v}\|^2 \stackrel{\text{def}}{=} \sum_{i=1}^m |v_i|^2 = \sum_{i=1}^m v_i^* v_i = (\mathbf{v}^*)^T \mathbf{v}$$

Conjugate transpose or Hermitian:

ightharpoonup For $\mathbf{v} \in \mathbf{C}^m$,

$$\|\mathbf{v}\|^2 \stackrel{\text{def}}{=} \sum_{i=1}^m |v_i|^2 = \sum_{i=1}^m v_i^* v_i = (\mathbf{v}^*)^T \mathbf{v}$$

Conjugate transpose or Hermitian: $(\mathbf{v}^*)^T = (\mathbf{v}^T)^* = \mathbf{v}^H$

ightharpoonup For $\mathbf{v} \in \mathbf{C}^m$,

$$\|\mathbf{v}\|^2 \stackrel{\text{def}}{=} \sum_{i=1}^m |v_i|^2 = \sum_{i=1}^m v_i^* v_i = (\mathbf{v}^*)^T \mathbf{v}$$

Conjugate transpose or Hermitian: $(\mathbf{v}^*)^T = (\mathbf{v}^T)^* = \mathbf{v}^H$

▶ Inner product defined so that $\langle \mathbf{v}, \mathbf{v} \rangle = ||\mathbf{v}||^2$:

ightharpoonup For $\mathbf{v} \in \mathbf{C}^m$,

$$\|\mathbf{v}\|^2 \stackrel{\text{def}}{=} \sum_{i=1}^m |v_i|^2 = \sum_{i=1}^m v_i^* v_i = (\mathbf{v}^*)^T \mathbf{v}$$

Conjugate transpose or Hermitian: $(\mathbf{v}^*)^T = (\mathbf{v}^T)^* = \mathbf{v}^H$

▶ Inner product defined so that $\langle \mathbf{v}, \mathbf{v} \rangle = ||\mathbf{v}||^2$:

$$\langle \mathbf{v}, \mathbf{w} \rangle \stackrel{\text{def}}{=} \sum_{i=1}^{m} v_i^* w_i = \mathbf{v}^H \mathbf{w}$$

ightharpoonup For $\mathbf{v} \in \mathbf{C}^m$,

$$\|\mathbf{v}\|^2 \stackrel{\text{def}}{=} \sum_{i=1}^m |v_i|^2 = \sum_{i=1}^m v_i^* v_i = (\mathbf{v}^*)^T \mathbf{v}$$

Conjugate transpose or Hermitian: $(\mathbf{v}^*)^T = (\mathbf{v}^T)^* = \mathbf{v}^H$

▶ Inner product defined so that $\langle \mathbf{v}, \mathbf{v} \rangle = ||\mathbf{v}||^2$:

$$\langle \mathbf{v}, \mathbf{w} \rangle \stackrel{\text{def}}{=} \sum_{i=1}^{m} v_i^* w_i = \mathbf{v}^H \mathbf{w}$$

ightharpoonup For $\mathbf{v} \in \mathbf{C}^m$,

$$\|\mathbf{v}\|^2 \stackrel{\text{def}}{=} \sum_{i=1}^m |v_i|^2 = \sum_{i=1}^m v_i^* v_i = (\mathbf{v}^*)^T \mathbf{v}$$

Conjugate transpose or Hermitian: $(\mathbf{v}^*)^T = (\mathbf{v}^T)^* = \mathbf{v}^H$

▶ Inner product defined so that $\langle \mathbf{v}, \mathbf{v} \rangle = ||\mathbf{v}||^2$:

$$\langle \mathbf{v}, \mathbf{w} \rangle \stackrel{\text{def}}{=} \sum_{i=1}^{m} v_i^* w_i = \mathbf{v}^H \mathbf{w}$$

► As in the case with the real vectors,

As in the case with the real vectors, the projection of ${\bf s}$ onto ${\bf v} \neq {\bf 0}$ is given by $c {\bf v}$,

As in the case with the real vectors, the projection of s onto $\mathbf{v} \neq \mathbf{0}$ is given by $c\mathbf{v}$, where

$$\langle \mathbf{v}, \mathbf{s} - c\mathbf{v} \rangle = 0$$

As in the case with the real vectors, the projection of s onto $\mathbf{v} \neq \mathbf{0}$ is given by $c\mathbf{v}$, where

$$\langle \mathbf{v}, \mathbf{s} - c\mathbf{v} \rangle = 0 \qquad \Leftrightarrow \qquad c = \frac{\langle \mathbf{v}, \mathbf{s} \rangle}{\|\mathbf{v}\|^2}$$