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Vector Norm

Notation: | all

lall = (i a?) "

=1

Same as length of a:

(Pythagoras' theorem extended to m-dimensional vectors)

Relationship to inner product:
lal = (a,a)'/?

Note: |jal| > 0 unless a = 0
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Geometrical Interpretation

Ax = Db & xla(l) + an(Q) + x3a(3) =b
b
(3)
0 a(2)
£
Orthogonality of b = sum of its projections onto

a® a® and a® = a® a® and a®
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