Inner Product of Real Vectors

Notation: $\langle\mathbf{a}, \mathbf{b}\rangle$

Inner Product of Real Vectors

Notation: $\langle\mathbf{a}, \mathbf{b}\rangle$

Same as dot product:

Inner Product of Real Vectors

Notation: $\langle\mathbf{a}, \mathbf{b}\rangle$

Same as dot product: if \mathbf{a} and \mathbf{b} are both m-dimensional,

Inner Product of Real Vectors

Notation: $\langle\mathbf{a}, \mathbf{b}\rangle$
Same as dot product: if \mathbf{a} and \mathbf{b} are both m-dimensional, then

$$
\langle\mathbf{a}, \mathbf{b}\rangle \stackrel{\text { def }}{=} \sum_{i=1}^{m} a_{i} b_{i}
$$

Inner Product of Real Vectors

Notation: $\langle\mathbf{a}, \mathbf{b}\rangle$
Same as dot product: if \mathbf{a} and \mathbf{b} are both m-dimensional, then

$$
\langle\mathbf{a}, \mathbf{b}\rangle \stackrel{\text { def }}{=} \sum_{i=1}^{m} a_{i} b_{i}=\mathbf{a}^{T} \mathbf{b}
$$

Inner Product of Real Vectors

Notation: $\langle\mathbf{a}, \mathbf{b}\rangle$
Same as dot product: if \mathbf{a} and \mathbf{b} are both m-dimensional, then

$$
\langle\mathbf{a}, \mathbf{b}\rangle \stackrel{\text { def }}{=} \sum_{i=1}^{m} a_{i} b_{i}=\mathbf{a}^{T} \mathbf{b}
$$

- Commutativity:

$$
\langle\mathbf{a}, \mathbf{b}\rangle=\langle\mathbf{b}, \mathbf{a}\rangle
$$

Inner Product of Real Vectors

Notation: $\langle\mathbf{a}, \mathbf{b}\rangle$
Same as dot product: if \mathbf{a} and \mathbf{b} are both m-dimensional, then

$$
\langle\mathbf{a}, \mathbf{b}\rangle \stackrel{\text { def }}{=} \sum_{i=1}^{m} a_{i} b_{i}=\mathbf{a}^{T} \mathbf{b}
$$

- Commutativity:

$$
\langle\mathbf{a}, \mathbf{b}\rangle=\langle\mathbf{b}, \mathbf{a}\rangle
$$

- Linearity:

$$
\langle\mathbf{a}, \lambda \mathbf{b}+\mu \tilde{\mathbf{b}}\rangle
$$

Inner Product of Real Vectors

Notation: $\langle\mathbf{a}, \mathbf{b}\rangle$
Same as dot product: if \mathbf{a} and \mathbf{b} are both m-dimensional, then

$$
\langle\mathbf{a}, \mathbf{b}\rangle \stackrel{\text { def }}{=} \sum_{i=1}^{m} a_{i} b_{i}=\mathbf{a}^{T} \mathbf{b}
$$

- Commutativity:

$$
\langle\mathbf{a}, \mathbf{b}\rangle=\langle\mathbf{b}, \mathbf{a}\rangle
$$

- Linearity:

$$
\langle\mathbf{a}, \lambda \mathbf{b}+\mu \tilde{\mathbf{b}}\rangle=\mathbf{a}^{T}(\lambda \mathbf{b}+\mu \tilde{\mathbf{b}})
$$

Inner Product of Real Vectors

Notation: $\langle\mathbf{a}, \mathbf{b}\rangle$
Same as dot product: if \mathbf{a} and \mathbf{b} are both m-dimensional, then

$$
\langle\mathbf{a}, \mathbf{b}\rangle \stackrel{\text { def }}{=} \sum_{i=1}^{m} a_{i} b_{i}=\mathbf{a}^{T} \mathbf{b}
$$

- Commutativity:

$$
\langle\mathbf{a}, \mathbf{b}\rangle=\langle\mathbf{b}, \mathbf{a}\rangle
$$

- Linearity:

$$
\begin{aligned}
\langle\mathbf{a}, \lambda \mathbf{b}+\mu \tilde{\mathbf{b}}\rangle & =\mathbf{a}^{T}(\lambda \mathbf{b}+\mu \tilde{\mathbf{b}}) \\
& =\lambda \cdot \mathbf{a}^{T} \mathbf{b}+\mu \cdot \mathbf{a}^{T} \tilde{\mathbf{b}}
\end{aligned}
$$

Inner Product of Real Vectors

Notation: $\langle\mathbf{a}, \mathbf{b}\rangle$
Same as dot product: if \mathbf{a} and \mathbf{b} are both m-dimensional, then

$$
\langle\mathbf{a}, \mathbf{b}\rangle \stackrel{\text { def }}{=} \sum_{i=1}^{m} a_{i} b_{i}=\mathbf{a}^{T} \mathbf{b}
$$

- Commutativity:

$$
\langle\mathbf{a}, \mathbf{b}\rangle=\langle\mathbf{b}, \mathbf{a}\rangle
$$

- Linearity:

$$
\begin{aligned}
\langle\mathbf{a}, \lambda \mathbf{b}+\mu \tilde{\mathbf{b}}\rangle & =\mathbf{a}^{T}(\lambda \mathbf{b}+\mu \tilde{\mathbf{b}}) \\
& =\lambda \cdot \mathbf{a}^{T} \mathbf{b}+\mu \cdot \mathbf{a}^{T} \tilde{\mathbf{b}} \\
& =\lambda\langle\mathbf{a}, \mathbf{b}\rangle+\mu\langle\mathbf{a}, \tilde{\mathbf{b}}\rangle
\end{aligned}
$$

Vector Norm

Notation: \|a\|

Vector Norm

Notation: \|a\|
Same as length of a:

Vector Norm

Notation: \|a\|

Same as length of a:

$$
\|\mathbf{a}\|=\left(\sum_{i=1}^{m} a_{i}^{2}\right)^{1 / 2}
$$

Vector Norm

Notation: \|a\|
Same as length of a:

$$
\|\mathbf{a}\|=\left(\sum_{i=1}^{m} a_{i}^{2}\right)^{1 / 2}
$$

(Pythagoras' theorem extended to m-dimensional vectors)

Vector Norm

Notation: \|a\|
Same as length of a:

$$
\|\mathbf{a}\|=\left(\sum_{i=1}^{m} a_{i}^{2}\right)^{1 / 2}
$$

(Pythagoras' theorem extended to m-dimensional vectors)

Relationship to inner product:

$$
\|\mathbf{a}\|=\langle\mathbf{a}, \mathbf{a}\rangle^{1 / 2}
$$

Vector Norm

Notation: \|a\|
Same as length of a:

$$
\|\mathbf{a}\|=\left(\sum_{i=1}^{m} a_{i}^{2}\right)^{1 / 2}
$$

(Pythagoras' theorem extended to m-dimensional vectors)

Relationship to inner product:

$$
\|\mathbf{a}\|=\langle\mathbf{a}, \mathbf{a}\rangle^{1 / 2}
$$

Note: $\|\mathbf{a}\|>0$ unless $\mathbf{a}=\mathbf{0}$

Geometrical Interpretation

$$
\mathbf{A x}=\mathbf{b} \quad \Leftrightarrow \quad x_{1} \mathbf{a}^{(1)}+x_{2} \mathbf{a}^{(2)}+x_{3} \mathbf{a}^{(3)}=\mathbf{b}
$$

Geometrical Interpretation

$$
\mathbf{A} \mathbf{x}=\mathbf{b} \quad \Leftrightarrow \quad x_{1} \mathbf{a}^{(1)}+x_{2} \mathbf{a}^{(2)}+x_{3} \mathbf{a}^{(3)}=\mathbf{b}
$$

Orthogonality of
$\mathbf{a}^{(1)}, \mathbf{a}^{(2)}$ and $\mathbf{a}^{(3)}$

Geometrical Interpretation

$$
\mathbf{A} \mathbf{x}=\mathbf{b} \quad \Leftrightarrow \quad x_{1} \mathbf{a}^{(1)}+x_{2} \mathbf{a}^{(2)}+x_{3} \mathbf{a}^{(3)}=\mathbf{b}
$$

> Orthogonality of $\mathbf{a}^{(1)}, \mathbf{a}^{(2)}$ and $\mathbf{a}^{(3)} \Rightarrow$
> $\mathbf{b}=$ sum of its projections onto
> $\mathbf{a}^{(1)}, \mathbf{a}^{(2)}$ and $\mathbf{a}^{(3)}$

Signal Representation

Problem: Express an arbitrary signal vector $\mathbf{s} \in \mathbb{R}^{m}$ as a linear combination of m reference (standard) vectors

Signal Representation

Problem: Express an arbitrary signal vector $\mathbf{s} \in \mathbb{R}^{m}$ as a linear combination of m reference (standard) vectors $\mathbf{v}^{(1)}, \ldots, \mathbf{v}^{(m)}$

Signal Representation

Problem: Express an arbitrary signal vector $\mathbf{s} \in \mathbb{R}^{m}$ as a linear combination of m reference (standard) vectors $\mathbf{v}^{(1)}, \ldots, \mathbf{v}^{(m)}$:

$$
\mathbf{s}=\sum_{k=1}^{m} c_{k} \mathbf{v}^{(k)}
$$

Signal Representation

Problem: Express an arbitrary signal vector $\mathbf{s} \in \mathbb{R}^{m}$ as a linear combination of m reference (standard) vectors $\mathbf{v}^{(1)}, \ldots, \mathbf{v}^{(m)}$:

$$
\mathbf{s}=\sum_{k=1}^{m} c_{k} \mathbf{v}^{(k)}
$$

If

$$
\mathbf{V}=\left[\begin{array}{llll}
\mathbf{v}^{(1)} & \mathbf{v}^{(2)} & \ldots & \mathbf{v}^{(m)}
\end{array}\right]
$$

Signal Representation

Problem: Express an arbitrary signal vector $\mathbf{s} \in \mathbb{R}^{m}$ as a linear combination of m reference (standard) vectors $\mathbf{v}^{(1)}, \ldots, \mathbf{v}^{(m)}$:

$$
\mathbf{s}=\sum_{k=1}^{m} c_{k} \mathbf{v}^{(k)}
$$

If

$$
\mathbf{V}=\left[\begin{array}{llll}
\mathbf{v}^{(1)} & \mathbf{v}^{(2)} & \ldots & \mathbf{v}^{(m)}
\end{array}\right]
$$

the representation becomes

$$
\mathbf{V c}=\mathbf{s}
$$

Signal Representation

Problem: Express an arbitrary signal vector $\mathbf{s} \in \mathbb{R}^{m}$ as a linear combination of m reference (standard) vectors $\mathbf{v}^{(1)}, \ldots, \mathbf{v}^{(m)}$:

If

$$
\mathbf{s}=\sum_{k=1}^{m} c_{k} \mathbf{v}^{(k)}
$$

$$
\mathbf{V}=\left[\begin{array}{llll}
\mathbf{v}^{(1)} & \mathbf{v}^{(2)} & \ldots & \mathbf{v}^{(m)}
\end{array}\right]
$$

the representation becomes

$$
\mathbf{V c}=\mathbf{s}
$$

with $\mathbf{c}=\left(c_{1}, \ldots, c_{m}\right)$ to be determined.

Signal Representation

Problem: Express an arbitrary signal vector $\mathbf{s} \in \mathbb{R}^{m}$ as a linear combination of m reference (standard) vectors $\mathbf{v}^{(1)}, \ldots, \mathbf{v}^{(m)}$:

If

$$
\mathbf{s}=\sum_{k=1}^{m} c_{k} \mathbf{v}^{(k)}
$$

$$
\mathbf{V}=\left[\begin{array}{llll}
\mathbf{v}^{(1)} & \mathbf{v}^{(2)} & \ldots & \mathbf{v}^{(m)}
\end{array}\right]
$$

the representation becomes

$$
\mathbf{V c}=\mathbf{s}
$$

with $\mathbf{c}=\left(c_{1}, \ldots, c_{m}\right)$ to be determined.
Solution: By projection, in the special case where the reference vectors (i.e., columns of \mathbf{V}) are mutually orthogonal.

Signal Representation

Problem: Express an arbitrary signal vector $\mathbf{s} \in \mathbb{R}^{m}$ as a linear combination of m reference (standard) vectors $\mathbf{v}^{(1)}, \ldots, \mathbf{v}^{(m)}$:

If

$$
\mathbf{s}=\sum_{k=1}^{m} c_{k} \mathbf{v}^{(k)}
$$

$$
\mathbf{V}=\left[\begin{array}{llll}
\mathbf{v}^{(1)} & \mathbf{v}^{(2)} & \ldots & \mathbf{v}^{(m)}
\end{array}\right]
$$

the representation becomes

$$
\mathbf{V c}=\mathbf{s}
$$

with $\mathbf{c}=\left(c_{1}, \ldots, c_{m}\right)$ to be determined.
Solution: By projection, in the special case where the reference vectors (i.e., columns of \mathbf{V}) are mutually orthogonal.

$$
(\forall k) \quad c_{k}=\frac{\left\langle\mathbf{v}^{(k)}, \mathbf{s}\right\rangle}{\left\|\mathbf{v}^{(k)}\right\|^{2}}
$$

