
Inner Product of Real Vectors

Notation: 〈a,b〉

Same as dot product: if a and b are both m-dimensional, then

〈a,b〉 def
=

m∑
i=1

aibi = aTb

I Commutativity:

〈a,b〉 = 〈b,a〉

I Linearity:

〈a, λb+ µb̃〉 = aT (λb+ µb̃)

= λ · aTb + µ · aT b̃
= λ〈a,b〉 + µ〈a, b̃〉
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Vector Norm

Notation: ‖a‖

Same as length of a:

‖a‖ =

(
m∑
i=1

a2i

)1/2

(Pythagoras’ theorem extended to m-dimensional vectors)

Relationship to inner product:

‖a‖ = 〈a,a〉1/2

Note: ‖a‖ > 0 unless a = 0
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Geometrical Interpretation

Ax = b ⇔ x1a
(1) + x2a

(2) + x3a
(3) = b

0
(2)
a

b

a
(1)

(3)
a

Orthogonality of

a(1) , a(2) and a(3)
⇒ b = sum of its projections onto

a(1) , a(2) and a(3)
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Signal Representation

Problem: Express an arbitrary signal vector s ∈ Rm as a linear
combination of m reference (standard) vectors

v(1), . . . ,v(m):

s =
m∑
k=1

ckv
(k)

If

V =
[
v(1) v(2) . . . v(m)

]
,

the representation becomes

Vc = s

with c = (c1, . . . , cm) to be determined.

Solution: By projection, in the special case where the reference
vectors (i.e., columns of V) are mutually orthogonal.

(∀k) ck =
〈v(k), s〉
‖v(k)‖2
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