Lecture 9

Lecture 9

- Some issues in solving $\mathbf{A x}=\mathbf{b}$

Lecture 9

- Some issues in solving $\mathbf{A x}=\mathbf{b}$
- Nonsingularity and the matrix inverse \mathbf{A}^{-1}

Lecture 9

- Some issues in solving $\mathbf{A x}=\mathbf{b}$
- Nonsingularity and the matrix inverse \mathbf{A}^{-1}
- Properties of \mathbf{A}^{-1}

Lecture 9

- Some issues in solving $\mathbf{A x}=\mathbf{b}$
- Nonsingularity and the matrix inverse \mathbf{A}^{-1}
- Properties of \mathbf{A}^{-1}
- Inversion of a triangular matrix

Lecture 9

- Some issues in solving $\mathbf{A x}=\mathbf{b}$
- Nonsingularity and the matrix inverse \mathbf{A}^{-1}
- Properties of \mathbf{A}^{-1}
- Inversion of a triangular matrix
- Solution of $\mathbf{A x}=\mathbf{b}$ by Gaussian elimination

Solving $\mathrm{Ax}=\mathrm{b}$

Solving $\mathbf{A x}=\mathbf{b}$

Solving $\mathbf{A x}=\mathbf{b}$

- Problem: determine the input x of a linear transformation (or system) based on the observed output $\mathbf{y}=\mathbf{b}$

Solving $\mathrm{Ax}=\mathrm{b}$

- Problem: determine the input x of a linear transformation (or system) based on the observed output $\mathbf{y}=\mathbf{b}$
- The dimensions of the input (n) and output (m) play a crucial role here.

The Case $m<n$

The Case $m<n$

The Case $m<n$

- Every b is almost certainly a valid system output, thus a solution x exists.

The Case $m<n$

- Every \mathbf{b} is almost certainly a valid system output, thus a solution x exists.
- The solution is not unique, thus the true input cannot be determined.

The Case $m>n$

The Case $m>n$

The Case $m>n$

- A random b is almost certainly not a valid system output, thus a solution does not exist.

The Case $m>n$

- A random b is almost certainly not a valid system output, thus a solution does not exist.
- If \mathbf{b} is a valid system output, a solution \mathbf{x} exists and is almost certainly unique.

The Case $m=n$

The Case $m=n$

The Case $m=n$

- Every b is almost certainly a valid system output corresponding to a unique system input \mathbf{x}.

The Case $m=n$

- Every b is almost certainly a valid system output corresponding to a unique system input \mathbf{x}.
- In other words, a solution \mathbf{x} exists for every \mathbf{b}, and is unique.

Properties of \mathbf{A}^{-1}

Properties of \mathbf{A}^{-1}

- $\mathbf{A A}^{-1}=\mathbf{A}^{-1} \mathbf{A}=\mathbf{I}$

Properties of \mathbf{A}^{-1}

- $\mathbf{A A}^{-1}=\mathbf{A}^{-1} \mathbf{A}=\mathbf{I}$

Properties of \mathbf{A}^{-1}

- $\mathbf{A A}^{-1}=\mathbf{A}^{-1} \mathbf{A}=\mathbf{I}$

- $(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}$

Properties of \mathbf{A}^{-1}

- $\mathbf{A A}^{-1}=\mathbf{A}^{-1} \mathbf{A}=\mathbf{I}$

- $(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}$

Example: Gaussian Elimination

Example: Gaussian Elimination

$$
\begin{aligned}
2 x_{1}+x_{2}-x_{3} & =6 \\
4 x_{1}-x_{3} & =6 \\
-8 x_{1}+2 x_{2}+3 x_{3} & =-10
\end{aligned}
$$

Example: Gaussian Elimination

$$
\begin{aligned}
2 x_{1}+x_{2}-x_{3} & =6 \\
4 x_{1}-x_{3} & =6 \\
-8 x_{1}+2 x_{2}+3 x_{3} & =-10
\end{aligned}
$$

