Lecture 5

Lecture 5

- The discrete-time sinusoid $x[n]=\cos (\omega n+\phi)$

Lecture 5

- The discrete-time sinusoid $x[n]=\cos (\omega n+\phi)$
- ω is an angle increment (rad/sample)

Lecture 5

- The discrete-time sinusoid $x[n]=\cos (\omega n+\phi)$
- ω is an angle increment (rad/sample)
- periodicity only when

Lecture 5

- The discrete-time sinusoid $x[n]=\cos (\omega n+\phi)$
- ω is an angle increment (rad/sample)
- periodicity only when $\omega=$ rational multiple of π

Lecture 5

- The discrete-time sinusoid $x[n]=\cos (\omega n+\phi)$
- ω is an angle increment (rad/sample)
- periodicity only when $\omega=$ rational multiple of π
- effective range of ω : 0 (lowest) to π highest

Lecture 5

- The discrete-time sinusoid $x[n]=\cos (\omega n+\phi)$
- ω is an angle increment (rad/sample)
- periodicity only when $\omega=$ rational multiple of π
- effective range of ω : 0 (lowest) to π highest
- Sampling $x(t)=\cos (\Omega t+\phi)$ every T_{s} sec

Lecture 5

- The discrete-time sinusoid $x[n]=\cos (\omega n+\phi)$
- ω is an angle increment (rad/sample)
- periodicity only when $\omega=$ rational multiple of π
- effective range of ω : 0 (lowest) to π highest
- Sampling $x(t)=\cos (\Omega t+\phi)$ every T_{s} sec
- produces $x[n]=\cos (\omega n+\phi)$

Lecture 5

- The discrete-time sinusoid $x[n]=\cos (\omega n+\phi)$
- ω is an angle increment (rad/sample)
- periodicity only when $\omega=$ rational multiple of π
- effective range of ω : 0 (lowest) to π highest
- Sampling $x(t)=\cos (\Omega t+\phi)$ every T_{s} sec
- produces $x[n]=\cos (\omega n+\phi)$
- by varying T_{s}, any ω can be obtained from Ω

