Lecture 4

Lecture 4

- Sinusoids in continuous time: example

Lecture 4

- Sinusoids in continuous time: example
- Addition of sinusoids using phasors

Lecture 4

- Sinusoids in continuous time: example
- Addition of sinusoids using phasors
- Introduction to discrete-time sinusoids

Example: Continuous-Time Sinusoid

Example: Continuous-Time Sinusoid

$$
x(t)=A \cos (\Omega t+\phi)
$$

Example: Continuous-Time Sinusoid

$x(t)=A \cos (\Omega t+\phi)$ is such that

Example: Continuous-Time Sinusoid

$x(t)=A \cos (\Omega t+\phi)$ is such that

- $x(t) \geq 3.0$ for $(1 / 6)^{\text {th }}$ of each period

Example: Continuous-Time Sinusoid

$x(t)=A \cos (\Omega t+\phi)$ is such that

- $x(t) \geq 3.0$ for $(1 / 6)^{\text {th }}$ of each period
- it takes 0.02 seconds for the value of the sinusoid to drop from 3.0 to 0.0

Example: Continuous-Time Sinusoid

$x(t)=A \cos (\Omega t+\phi)$ is such that

- $x(t) \geq 3.0$ for $(1 / 6)^{\text {th }}$ of each period
- it takes 0.02 seconds for the value of the sinusoid to drop from 3.0 to 0.0
- $x(0)=-\sqrt{3}$ and the first derivative $x^{\prime}(0)$ is positive

Example: Continuous-Time Sinusoid

$x(t)=A \cos (\Omega t+\phi)$ is such that

- $x(t) \geq 3.0$ for $(1 / 6)^{\text {th }}$ of each period
- it takes 0.02 seconds for the value of the sinusoid to drop from 3.0 to 0.0
- $x(0)=-\sqrt{3}$ and the first derivative $x^{\prime}(0)$ is positive

Based on given information, determine A, Ω and ϕ.

