Lecture 3

Lecture 3

- The $n^{\text {th }}$ root of a complex number

Lecture 3

- The $n^{\text {th }}$ root of a complex number
- The complex exponential $e^{j \theta}=\cos \theta+j \sin \theta$

Lecture 3

- The $n^{\text {th }}$ root of a complex number
- The complex exponential $e^{j \theta}=\cos \theta+j \sin \theta$
- Sinusoids in continuous time

Example: Continuous-Time Sinusoid

Example: Continuous-Time Sinusoid

$x(t)=A \cos (\Omega t+\phi)$ is such that

Example: Continuous-Time Sinusoid

$x(t)=A \cos (\Omega t+\phi)$ is such that

- $x(t) \geq 1.50$ for 23.0% of its period

Example: Continuous-Time Sinusoid

$x(t)=A \cos (\Omega t+\phi)$ is such that

- $x(t) \geq 1.50$ for 23.0% of its period
- it takes 0.02 seconds for the value of the sinusoid to drop from 1.50 to 0.00

Example: Continuous-Time Sinusoid

$x(t)=A \cos (\Omega t+\phi)$ is such that

- $x(t) \geq 1.50$ for 23.0% of its period
- it takes 0.02 seconds for the value of the sinusoid to drop from 1.50 to 0.00
- $x(0)=-0.3$ and the first derivative $x^{\prime}(0)$ is positive

Example: Continuous-Time Sinusoid

$x(t)=A \cos (\Omega t+\phi)$ is such that

- $x(t) \geq 1.50$ for 23.0% of its period
- it takes 0.02 seconds for the value of the sinusoid to drop from 1.50 to 0.00
- $x(0)=-0.3$ and the first derivative $x^{\prime}(0)$ is positive

Based on given information, determine A, Ω and ϕ.

