Lecture 3

• The n^{th} root of a complex number

(ロ)、(型)、(E)、(E)、 E) の(の)

- The n^{th} root of a complex number
- The complex exponential $e^{j\theta} = \cos \theta + j \sin \theta$

Lecture 3

- \blacktriangleright The $n^{\rm th}$ root of a complex number
- The complex exponential $e^{j\theta} = \cos \theta + j \sin \theta$
- Sinusoids in continuous time

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

 $x(t) = A\cos(\Omega t + \phi)$ is such that

$$x(t) = A\cos(\Omega t + \phi)$$
 is such that

•
$$x(t) \ge 1.50$$
 for 23.0% of its period

 $x(t) = A\cos(\Omega t + \phi)$ is such that

• $x(t) \ge 1.50$ for 23.0% of its period

it takes 0.02 seconds for the value of the sinusoid to drop from 1.50 to 0.00

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $x(t) = A\cos(\Omega t + \phi)$ is such that

• $x(t) \ge 1.50$ for 23.0% of its period

it takes 0.02 seconds for the value of the sinusoid to drop from 1.50 to 0.00

 $\blacktriangleright~x(0)=-0.3$ and the first derivative x'(0) is positive

$$x(t) = A\cos(\Omega t + \phi)$$
 is such that

- $x(t) \ge 1.50$ for 23.0% of its period
- it takes 0.02 seconds for the value of the sinusoid to drop from 1.50 to 0.00

• x(0) = -0.3 and the first derivative x'(0) is positive

Based on given information, determine A, Ω and ϕ .