
LECTURE 1

Topic: complex numbers

Textbook References: Section 1.3

Key Points:

• A complex number z is a point on a two-dimensional plane (the complex plane). It can be
specified using either Cartesian (x, y) or polar (r, θ) coordinates.

• Addition and scaling of complex numbers follows the same rules as for (two-dimensional)
vectors.

Theory and Examples:

1. A complex number z is a point (or vector) on a two-dimensional plane, known as the complex
plane and represented by C.

0

z=(x,y)

x

y
r

θ

The Cartesian coordinates of z are

x = <e{z}, the real part of z

y = =m{z}, the imaginary part of z

and the corresponding axes are known as the real and imaginary axes, respectively.

The polar coordinates of z are

r = |z|, the modulus, or magnitude, of z

θ = ∠z, the angle of z

2. The usual rules for converting between coordinate systems apply:

x = r cos θ

y = r sin θ

r =
√

x2 + y2

As for the angle θ, it is customary to quote it in radians. Note that 2π rad = 3600 = one
full revolution, and thus angles which differ by multiples of 2π are equivalent. Usually, θ in
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quoted in the interval [0, 2π) or (−π, π]. We can obtain θ from (x, y) by careful use of the
arctan function:

θ = arctan
(y

x

)
+ (0 or π)

where π is added if and only if x is negative.

3. Example. Consider the complex numbers z1 and z2, where

<e{z1} = −5, =m{z1} = 2

and
|z2| = 4, ∠z2 = π/6 rad

Your task: Plot these on the complex plane.

The modulus of z1 is given by

|z1| =
√

(−5)2 + 22 = 5.3852

and its angle by
∠z1 = arctan(−2/5) + π = 2.7611 rad

or 158.20. Note that π was added to the result of arctan(·) because the real part of z1 is
negative.

As for z2, we have

<e{z2} = 4 cos(π/6) = 2
√

3 = 3.4641
=m{z2} = 4 sin(π/6) = 2

Your task: Using as little algebra as possible, repeat for

<e{z3} = 5, =m{z3} = −2

and
|z4| = 4, ∠z4 = −π/6 rad

4. Since complex numbers are vectors, expressions such as cz (scaling by a real constant c) or
z1+z2 (summation) have the same meaning as in the case of two-dimensional vectors. Clearly,
summation of two complex numbers is easiest to perform using Cartesian coordinates (i.e.,
real and imaginary parts).
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LECTURE 2

Topic: lines and circles on the complex plane; complex multiplication and division

Textbook References: section 1.3

Key Points:

• Two complex numbers can be multiplied by expressing each number in the form z = x + jy,
then using distributivity and the rule j2 = −1 (i.e., j is treated as the square root of −1).

• The product of two complex numbers with polar coordinates (r1, θ1) and (r2, θ2) is the complex
number with polar coordinates (r1r2, θ1 + θ2).

• The product of a complex number z and its conjugate z∗ equals the square modulus |z|2.
• If z has polar coordinates (r, θ), its inverse z−1 has polar coordinates (r−1, −θ).

Theory and Examples:

1. The modulus |z| represents the length of the vector z. Similarly, the expression |z1− z2| gives
the distance between the points z1 and z2. Using this concept, we see that the following two
equations in the variable z each have a familiar geometrical interpretation:

• |z − z0| = a, where a is a positive constant, is the set of points z on the complex plane
which are at a fixed distance a from the point z0. This is a circle of radius a centered at
z0.

• |z− z1| = |z− z2| is the set of points z on the complex plane which are equidistant from
the points z1 and z2. This is the same as the perpendicular bisector of the line segment
joining z1 and z2.

Your task: Sketch the two curves given by the equations

|z − 3 + 4j| = 5

and
|z − 3| = |z + 4j|

2. The most common form for a complex number z incorporates the real and imaginary parts
as follows:

z = x + jy

This form, together with the convention that j × j = j2 = −1, allows us to multiply two
complex numbers together. For example,

(5− 2j)(3− 4j) = 15− 20j − 6j + 8j2

= 7− 26j

3



3. In polar form, multiplication of complex numbers is simple. If

z1 = r1(cos θ1 + j sin θ1) and z2 = r2(cos θ2 + j sin θ2)

then

z1z2 = r1r2(cos θ1 + j sin θ1)(cos θ2 + j sin θ2)
= r1r2[(cos θ1 cos θ2 − sin θ1 sin θ2) + j(cos θ1 sin θ2 + sin θ1 cos θ2)]

But

cos θ1 cos θ2 − sin θ1 sin θ2 = cos(θ1 + θ2)
cos θ1 sin θ2 + sin θ1 cos θ2 = sin(θ1 + θ2)

and thus z = z1z2 has modulus equal to the product of the two moduli, and angle equal to
the sum of the two angles.

4. Example. As before, take

z1 = 5− 2j and z2 = 3− 4j

The polar forms are
|z1| =

√
29, ∠z1 = −0.3805

and
|z2| = 5, ∠z2 = −0.9273

(The angles were obtained using the MATLAB ANGLE function, which returns values between
−π and π.) Therefore

|z1z2| = 5
√

29, ∠z1z2 = −0.3805− 0.9273 = −1.3078

and, in Cartesian form

z1z2 = 5
√

29 · (cos(−1.3078) + j sin(−1.3078))
= 7− j26

Extension: Powers of z1 and z2, and products thereof, can be also computed easily in polar
form. Thus

|z5
1z

2
2 | = 295/2 · 52 = 1.1322× 105,

∠z5
1z

2
2 = 5 · (−0.3805) + 2 · (−0.9273) = −3.7571

and

z5
1z

2
2 = (1.1322× 105) · (cos(−3.7571) + j sin(−3.7571))
≈ 92442 + j65370

where the real and imaginary parts were rounded to the nearest integers. The calculation was
deliberately carried out using low precision (four or five digits) in the intermediate results, in
order to illustrate the accumulation of roundoff errors. The correct result is 92443 + j65374.
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5. Division of two complex numbers makes implicit use of the inverse, i.e.,

z1/z2 = z1(1/z2) = z1z
−1
2

This can be carried out in a single step by multiplying both the numerator z1 and the
denominator z2 by the complex conjugate of z2 (which differs from z2 in the sign of the
imaginary part). Thus If z1 = 5− 2j and z2 = 3− 4j, then

z1

z2
=

5− 2j

3− 4j

=
(5− 2j)(3 + 4j)
(3− 4j)(3 + 4j)

=
(5− 2j)(3 + 4j)

32 + 42

=
23
25

+ j
14
25

Here we had an instance of the identity

zz∗ = |z|2

i.e., the product of a complex number and its conjugate equals the (real-valued) square
magnitude of that number.

6. In polar form, dividing two complex numbers corresponds to dividing their magnitudes and
subtracting one angle from the other. This is because

z−1 = z∗/|z|2

and therefore
|z−1| = |z|/|z|2 = |z|−1, ∠z−1 = ∠z∗ = −∠z

Your task: Verify the above results. Plot z, z∗ and z−1 for z = 3− 4j.
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LECTURE 3

Topic: complex exponentials; nth root of a complex number; continuous-time sinusoids

Textbook References: sections 1.3 and 1.4

Key Points:

• The generic complex number z = r(cos θ + j sin θ) can be also written as z = rejθ.

• As is the case with real exponentials, ej(θ+φ) = ejθejφ

• The functions cos θ and sin θ can be expressed in terms of complex exponentials:

cos θ =
ejθ + e−jθ

2
and sin θ =

ejθ − e−jθ

2j

• The equation zn = ejφ, where φ is a given angle, has n roots of the form z = ejθ; these are
obtained by setting θ = (φ + 2kπ)/n, where k = 0, . . . , n− 1.

• The functions cos θ and sin θ are both periodic with period 2π (radians), and are shifted
versions of each other.

• The generic time-dependent sinusoid A cos(Ωt + φ) has three parameters: amplitude A, an-
gular frequency Ω (rad/sec) and initial phase φ. The cyclic frequency f (Hz) and period T
(sec) are related to Ω by

f = 1/T =
Ω
2π

Theory and Examples:

1. Take a complex number z with modulus |z| = r and angle ∠z = θ:

z = r(cos θ + j sin θ)

An alternative form for z is
z = rejθ

where we use the identity
ejθ = cos θ + j sin θ

This can be obtained from the Taylor series

et = 1 + t +
t2

2!
+

t3

3!
+ · · ·

by setting t = jθ. Grouping the real and imaginary terms separately on the expansion side,
we recognize the two Taylor series

cos θ = 1− θ2

2!
+

θ4

4!
− · · · (real part)

sin θ = θ − θ3

3!
+

θ5

5!
− · · · (imaginary part)
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2. Example. In polar form, z1 = −1 + j and z2 = 1 + j
√

3 are given by

|z1| =
√

2, ∠z1 = 3π/4

and
|z2| = 2, ∠z2 = π/3

In complex exponential form,

z1 =
√

2ej(3π/4) and z2 = 2ej(π/3)

3. The multiplication/division rules for the polar form can be easily explained using the identity

ea+b = ea · eb

Thus

r1e
jθ1 · r2e

jθ2 = r1r2e
j(θ1+θ2) and

r1e
jθ1

r2ejθ2
=

r1

r2
· ej(θ1−θ2)

Question: If z = rejθ, what is the complex exponential form of z∗?

4. By adding/subtracting the equations

ejθ = cos θ + j sin θ

e−jθ = cos(−θ) + j sin(−θ) = cos θ − j sin θ

we get the following relationships for the sine and cosine functions:

cos θ =
ejθ + e−jθ

2
and sin θ =

ejθ − e−jθ

2j

5. The equation
zn = v ,

where z is a complex variable and v is a complex constant, has n complex roots (this is true
for any polynomial of degree n). These roots can be found using the following observations:

• |z|n = |v|, therefore every root z must satisfy |z| = |v|1/n, i.e., it must lie on a circle of
radius |v|1/n centered at the origin;

• on that circle, the complex number z with

∠z = (∠v)/n

is a root;

• on the same circle, the angles

(∠v)/n + k(2π/n) , k = 1, . . . , n− 1

also correspond to roots (the remaining n− 1 roots of the equation).
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6. Example. To determine the four roots of

z4 = j ,

we note that j = ejπ/2. Since |j| = 1, all the roots of the equation lie on the unit circle. And
since ∠j = π/2, the roots are

ej(π/8), ej(5π/8), ej(9π/8) and ej(13π/8)

Your task: Determine and sketch the roots of z3 = −8.

Re

Im
j

-j

-1 1
π/8

.

.
.

.

7. The functions cos θ and sin θ (where θ is in radians) are both periodic with period 2π:

cos(θ + 2π) = cos θ

sin(θ + 2π) = sin θ

The cosine has (even) symmetry about θ = 0, the sine has odd symmetry (or antisymmetry):

cos(−θ) = cos θ

sin(−θ) = − sin θ

Either function can be obtained from the other by shifting θ by π/2 in the appropriate
direction:

sin θ = cos(θ − π/2)
cos θ = sin(θ + π/2)

A shift in θ by π (same as −π) results in sign reversal in each case:

cos(θ + π) = − cos θ

sin(θ + π) = − sin θ

8. The generic continuous-time sinusoid is given by

x(t) = A cos(Ωt + φ)

where
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cosθ sinθ

0                  2π                4π        θ 0                  2π                4π        θ

1

−1 −1

1

• A > 0 is the amplitude

• Ω is the angular frequency, in rad/sec

• t is in seconds

• φ is the initial phase, in radians

Since cos θ has period 2π radians, x(t) has period T = 2π/Ω seconds. The cyclic frequency
(i.e., periods or cycles per second) is given by

f = 1/T =
Ω
2π

and is expressed in Hz = 1/sec = 1 cycle/sec.

9. Example. Suppose that you are given the following information about a continuous-time
sinusoid x(t) = A cos(Ωt + φ):

• x(t) ≥ 1.50 for 23.0% of its period;

• it takes 0.02 seconds for the value of the sinusoid to drop from 1.50 to 0.00; and

• x(0) = −0.3 and the first derivative x′(0) is positive.

You have three (and then some) independent pieces of information and three unknowns (A,
Ω and φ), so you should be able to solve for these parameters.

Justify each of the following results:

• The first piece of information gives A = 1.5/ cos(0.23π) = 2.0.

• In addition, the second piece of information gives

0.5π − 0.23π

Ω
= 0.02 ⇒ Ω = 13.5π

Question: What are the values of f (in Hz) and T (in sec)?

• With A known, the third piece of information gives φ = − cos−1(−0.3/2.0) = −1.721
rad.
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LECTURE 4

Topic: phasors; discrete-time sinusoids

Textbook References: sections 1.4, 1.5

Key Points:

• The stationary phasor of A cos(Ωt + φ) is the complex number Aejφ. The sum of two (or
more) sinusoids of arbitrary amplitudes and phases but of identical frequency Ω is a sinusoid
of frequency Ω. Sinusoids of identical frequency can be added together by taking the complex
sum of their stationary phasors.

• The discrete time parameter n counts samples. The (angular) frequency parameter ω is an
angle increment (radians/sample). Physical time (seconds) is nowhere involved.

• Frequencies ω and ω + 2π are equivalent (i.e., produce the same signal) for real or complex
sinusoids in discrete time.

• Frequencies ω and 2π − ω can be used alternatively to describe a real sinusoid in discrete
time:

cos(ωn + φ) = cos(−ωn− φ) = cos((2π − ω)n− φ)

• The effective range of frequencies for a real sinusoid in discrete time is 0 (lowest) to π (highest).

• A discrete-time sinusoid is periodic if and only if ω is of the form

ω =
k

N
· 2π

for integers k and N . The fundamental period is the smallest value of N for which the above
holds.

Theory and Examples:

1. Since cos θ = <e{ejθ}, it follows that x(t) is the real part of the time-dependent complex
sinusoid

z(t) = Aej(Ωt+φ)

On the complex plane, the point z(t) moves with constant angular velocity Ω on a circle of
radius A. Its projection on the real axis equals x(t). The initial position

z(0) = Aejφ ,

viewed as a vector, is known as the stationary phasor of x(t).

2. Two real-valued sinusoids of the same frequency can be added together:

A1 cos(Ωt + φ1) + A2 cos(Ωt + φ2) = <e
{

A1e
j(Ωt+φ1) + A2e

j(Ωt+φ2)
}

= <e
{

(A1e
jφ1 + A2e

jφ2)ejΩt
}

= A cos(Ωt + φ)
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z(t)

z (t)*

Ωt+φ

−Ωt−φ

jA

−jA

A−A

x(t)

where
Aejφ = A1e

jφ1 + A2e
jφ2

The result is a sinusoid of the same frequency, whose stationary phasor is the complex (i.e.,
vector) sum of two component stationary phasors.

3. Example.
2.7 cos(15πt + 0.6) + 4.1 sin(15πt− 1.8) = A cos(15πt + φ)

where
Aejφ = 2.7ej0.6 + 4.1ej(−1.8−π/2)

We convert each term to its Cartesian form, compute the sum and convert back to polar form
to obtain A = 3.0241 and φ = 2.1937.

Your task: Fill in the missing steps. What happened to sin(·)?
4. A discrete-time signal is a sequence of values (samples) x[n], where n ranges over all integers.

A discrete-time sinusoid has the general form

x[n] = A cos(ωn + φ)

or, in its complex version,
z[n] = Aej(ωn+φ)

Question: How is x[n] related to z[n]?

5. Your task: Use MATLAB to generate 100 values of each of the discrete-time sinusoids x1[n]
and x2[n]:

n = 0:99;
w1 = pi/25; q1 = 2*pi/5;
x1 = cos(w1*n + q1);
w2 = 2.4; q2 = -1.3;
x2 = cos(w2*n + q2);
bar(n,x1) % discrete bar graph
plot(n,x1), grid % extrapolated graph
bar(n,x2) % no resemblance to a continuous-time sinusoid
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Depending on its frequency, a discrete-time sinusoid may look similar to, or quite different
from, a continuous-time one.

6. The frequency parameter ω is measured in radians, or radians per sample. (Unlike Ω, which
is in radians per second). Thus the frequency of a discrete-time sinusoid is just an angle
increment: the argument of cos(·) increases by a fixed amount ω with each sample.

Two key observations:

• ω and ω + 2kπ, where k is an integer, represent the same frequency. This is because ωn
and (ω+2kπ)n differ by 2knπ radians, i.e., a whole number of revolutions, and therefore
at every time n,

cos(ωn + φ) = cos((ω + 2kπ)n + φ)
ej(ωn+φ) = ej((ω+2kπ)n+φ)

Typically, the range of ω is chosen as [0, 2π) or (−π, π].

• In the real-valued case, either ω or −ω can be used to express the same sinusoid. This
is due to the identity cos θ = cos(−θ), which implies that for every n,

cos(ωn + φ) = cos(−ωn− φ)

As a result, the range of ω for real-valued sinusoids can be limited to [0, π].

ωn+φ

−ωn−φ

1

Same value obtained
for cos(.) 0π

7. Example. We are asked to express

z[n] = ej((37π/13)n+π/8) and x[n] = cos((42π/13)n− 5π/6)

using the smallest positive equivalent frequency ω in each case. Note that both frequencies
(37π/13 and 42π/13) are greater than 2π, so we need to subtract multiples of 2π. For the
complex-valued sinusoid, the answer is

z[n] = ej((11π/13)n+π/8)

For the real-valued sinusoid, we have

42π

13
− 2π =

16π

13
and

42π

13
− 4π = −10π

13

Therefore the answer is
x[n] = cos((10π/13)n + 5π/6)
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8. Your task: Find simple expressions for x[n] = A cos(ωn + φ) when ω = 0 (lowest possible
frequency) and ω = π (highest possible frequency). Also: Modify the MATLAB script given
earlier to compute and plot 100 values of the high-frequency sinusoid

x3[n] = cos((24π/25)n + 2π/5)

Note that the frequencies of x1[n] and x3[n] are complementary to each other in the interval
[0, π].

9. The fundamental period of x[n] is the smallest integer N such that

(∀n) x[n + N ] = x[n]

If no such N exists, then the signal is nonperiodic (or aperiodic).

The sequences cos(ωn + φ) and ej(ωn+φ) are repetitions of a fixed vector of N values if and
only if the argument ωn + φ changes by an exact multiple of 2π every N time indices. In
other words, if and only if

ωN = 2kπ ⇔ ω =
k

N
· 2π

for some integer k. The smallest value of N satisfying the above relationship is the funda-
mental period.

10. Example. Shown is the fundamental period N (where periodic).

ω = 0 ⇒ N = 1
ω = π ⇒ N = 2

ω = 1.0 ⇒ N = ∞ (i.e., nonperiodic)
ω = 10π/13 ⇒ N = 13
ω = 11π/13 ⇒ N = 26

Note that for a periodic discrete-time sinusoid, the fundamental period does not necessarily
equal 2π/ω (as was the case with continuous-time sinusoids).
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LECTURE 5

Topic: sampling of continuous-time sinusoids

Textbook References: section 1.6

Key Points:

• Sampling a continuous-time sinusoid at a rate of fs = 1/Ts (samples/second) produces a
discrete-time sinusoid.

• If the continuous-time sinusoid has angular frequency Ω = 2πf = 2π/T , the resulting discrete-
time sinusoid has angular frequency

ω = ΩTs = 2π · f

fs
= 2π · Ts

T

• At high sampling rates, discrete-time samples capture the variation of the continuous-time
signal in great detail.

• Two different sampling rates fs = 1/Ts and f ′s = 1/T ′s will produce samples having the same
effective frequency provided the sum Ts + T ′s or the difference Ts − T ′s is an integer multiple
of T = 1/f .

Theory and Examples:

1. The sampling formula
x[n] = x(nTs)

produces a sequence of samples x[n] from a continuous-time signal x(t). Ts is the sampling
period and 1/Ts is the sampling rate. Applied to the continuous-time sinusoid

x(t) = cos(Ωt + φ) ,

this formula produces the discrete-time sinusoid

x[n] = cos(ΩTsn + φ)

2. Example. The graph below shows a segment of the sinusoid

x(t) = cos((400π/3)t− π/8)

Your task: Using two types of stem lines, mark the samples in each of

x1[n] = cos((2π/5)n− π/8) (i.e., Ts = 3.0 ms)
x2[n] = cos((2π/3)n− π/8) (i.e., Ts = 5.0 ms)
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.015 0.03 t

3. The frequency of the discrete-time sinusoid obtained by sampling is

ω = ΩTs = 2π · f

fs
= 2π · Ts

T

Using this equation, it is easy to determine the relationship between sampling rate fs (sam-
ples/sec) to the frequency f (Hz) in order for the discrete-time sinusoid to be periodic.

Questions:

• What is this relationship?

• What is the equivalent condition in terms of Ts and T?

• For what values of Ts is the discrete-time sequence x[n] constant in n?

• For what values of Ts is x[ · ] of the form . . . , a,−a, a,−a, . . .?

4. If the ratio Ts/T is small (i.e., fs/f is large), the sequence of samples x[n] closely tracks the
variation in x(t). The smaller the ratio Ts/T , the easier it becomes to interpolate the discrete
samples so as to approximate to the continuous-time signal. In effect, this is what MATLAB
does in producing a continuous plot.

5. The range of values

Ts ∈ [0, T/2] or equivalently fs ∈ [2f, ∞]

corresponds to ω ∈ [0, π], which is the effective frequency range for real sinusoids. This means
that if Ts > T/2, or equivalently, if fs < 2f , the sequence of samples obtained from x(t) has
the same frequency as one obtained using a smaller sampling period (or higher sampling
rate). There are, in fact, infinitely many sampling rates that produce effectively the same
ω in x[n]. To see this, recall that ω and ω′ can be used to describe the same discrete-time
sinusoid provided

ω′ = ±ω + 2kπ
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for some integer k. Thus if fs and f ′s are two sampling rates such that

f

fs
± f

f ′s
= k

or equivalently, if
Ts ± T ′s = kT ,

then the two resulting sample sequences will have the same (angular) frequency, provided
that frequency is expressed in the interval [0, π].

6. Example. Consider the continuous-time sinusoid

x(t) = cos((400π/3)t− π/8)

and the discrete-time sinusoids

x1[n] = cos((2π/5)n− π/8) (as before)
x3[n] = cos((2π/5)n + π/8)

Here T = 15.0 ms, f = 200/3 Hz.

• The smallest Ts which produces x1[ · ] equals (from ω = ΩTs)

Ts =
2π

5
· 3
400π

= 3.0 ms

The remaining values of Ts which produce x1[ · ] are given by

Ts = 3.0 + k(15.0) ms, k = 1, 2, . . .

• As for x3[ · ], we use cos(−θ) = cos(θ) to express it as

x3[n] = cos(−(2π/5)n− π/8)

The values of Ts which produce x3[ · ] are thus

Ts = −3.0 + k(15.0) ms, k = 0, 1, . . .

Since Ts is necessarily positive, it follows that

Ts = 12.0 + k(15.0) ms, k = 1, 2, . . .
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LECTURE 6

Topic: aliasing

Textbook References: section 1.6

Key Points:

• Two continuous-time sinusoids having different frequencies f and f ′ (Hz) may, when sampled
at the same sampling rate fs, produce sample sequences having effectively the same frequency.
This phenomenon is known as aliasing, and occurs when

f ± f ′ = kfs

for some integer k.

• If a continuous-time signal consisting of additive sinusoidal components is sampled uniformly,
reconstruction of that signal from its samples is impossible if aliasing has occurred between
any two components at different frequencies.

• If the sinusoidal components of a continuous-time signal span the frequency range 0 to fB

(Hz), aliasing is avoided if and only if the sampling rate fs exceeds 2fB, a figure known as
the Nyquist rate.

Theory and Examples:

1. We saw that a continuous-time sinusoid of frequency f = 1/T (Hz) can be sampled at two
different rates fs = 1/Ts and f ′s = 1/T ′s to produce sample sequences having the same effective
frequency. This happens whenever

Ts ± T ′s = kT

for some integer k.

2. An analogous phenomenon occurs when two continuous-time sinusoids having different fre-
quencies f and f ′ are sampled at the same rate fs: depending on the value of fs, the two
sample sequences may have the same effective frequency. When this happens, we say that
f and f ′ are aliases (of each other) with respect to the sampling rate fs. In mathematical
terms, we know that

ω = 2π · f

fs
and ω′ = 2π · f ′

fs

can be used to represent the same discrete-time sinusoid provided

ω′ = ±ω + 2kπ

for some integer k. Thus f and f ′ are aliases with respect to fs provided

f ± f ′ = kfs
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3. Example. Let f = 150 Hz and fs = 400 samples/sec. Then the aliases of f are given (in
Hz) by

f ′ = 150 + k(400) and f ′ = −150 + k(400)

If we reduce fs to 280 samples/sec, then the aliases of f are given by

f ′ = 150 + k(280) and f ′ = −150 + k(280)

Your task: In each case (fs = 400 and fs = 280), determine all the aliases in the range 0 to
2,000 Hz.

4. Example. Suppose that x(t) is a sinusoid whose frequency is between 600 and 800 Hz. It is
sampled at a rate fs = 400 samples/sec to produce

x[n] = 4.2 cos(0.75πn− 0.3)

This information suffices to determine x(t), i.e., reconstruct the signal from its samples. First,
we note that

2π · f

fs
= 0.75π ⇒ f = (0.375)(400) = 150 Hz

which is outside the given frequency range. From the previous example, the only alias of f
in the range [600, 800] Hz is f ′ = 650 Hz. This is the correct frequency for x(t), and

x(t) = 4.2 cos(1300πt + 0.3)

Question: Why was the initial phase inverted (between x(t) and x[n])?

5. Analog-to-digital conversion involves sampling a signal x(t) at a rate fs and storing the sam-
ples in digital form (i.e., using finite precision). Digital-to-analog conversion is the reverse
process of reconstructing x(t) from its samples. If x(t) is a sum of many sinusoidal compo-
nents, then faithful reconstruction is impossible if aliasing has taken place, i.e., if two or more
components of x(t) have frequencies which are aliases of each other with respect of fs.

Your task: Convince yourself that this is so by revisiting the previous example. If the
same sample sequence x[n] had represented the sum of two sinusoids in continuous time, at
frequencies 150 and 650 Hz, could you have written an equation for x(t) using the given
formula for x[n] only?

6. When sampling a signal x(t) containing many different frequencies in the range [0, fB] Hz (B
here stands for bandwidth), aliasing can be avoided if the sampling rate is greater than 2fB.
One way of showing this is by plotting all aliases of frequencies in the given range [0, fB],
using the equations derived earlier:

f ′ = f + kfs (top axis)

and
f ′ = −f + kfs (bottom axis)

(Plot on next page.) Each value of k corresponds to a translate of [0, fB] on the frequency
axis. Aliasing is avoided when no two bands overlap (except at multiples of fs). As can be
seen from the figure, this is ensured if fs > 2fB.
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  −f                   f −f                      0                      f                          f                   f +f
s                          B    s                                                               B                                   s                          B    s

    −f                        −f                   0                       −f +f                   f                     −f +2f
s                                   B                                                               B    s                           s                               B       s  

Your task: Explain why aliasing occurs when fs = 2fB − δ, where δ is positive amount less
than, say, fB. Find two frequencies in the interval [0, fB] that are aliases of each other with
respect to fs.
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LECTURE 7

Topic: matrix-vector product; matrix of a linear transformation; matrix-matrix product

Textbook References: sections 2.1, 2.2.1, 2.2.2

Key Points:

• The matrix-vector product Ax, where A is a m× n matrix and x is a n-dimensional column
vector, is computed by taking the dot product of each row of A with x. The result is a
m-dimensional column vector.

• For a fixed matrix A, the product Ax is linear in x:

A(c1x(1) + c2x(2)) = c1Ax(1) + c2Ax(2)

In other words, A acts as a linear transformation, or linear system, which maps n-dimensional
vectors to m-dimensional ones.

• Every linear transformation, or linear system, Rn → Rm has a m × n matrix A associated
with it. Each column of A is obtained by applying that transformation to the respective
standard n-dimensional unit vector.

• If A is m× p and B is p× n, then the product AB is a m× n matrix whose (i, j)th element
is the dot product of the ith row of A and the jth column of B.

Theory and Examples:

1. A m × n matrix consists of entries (or elements) aij , where i and j are the row and column
indices, respectively. The space of all real-valued m× n matrices is denoted by Rm×n.

2. A column vector is a matrix consisting of one column only; a row vector is a matrix consisting
of one row only. The transpose operator · T converts row vectors to column vectors and vice
versa. By default, a lower-case boldface letter such as a corresponds to a column vector. In
situations where the orientation (row or column) of a vector is immaterial, we simply write

a = (a1, . . . , an)

which is a vector in Rn.

3. The sum S = A + B of two matrices of the same dimension is obtained by adding respective
entries together:

sij = aij + bij

The matrix cA, where c is a real number, has the same dimensions as A and is obtained by
scaling each entry of A by c.
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4. If A is a m× n matrix and x is a n× 1 (column) vector, then

y = Ax

is a m× 1 vector such that

(∀i) yi =
n∑

j=1

aijxj

In other words, the ith entry of y is the dot product of the ith row of A with x.

We will also view the product y = Ax as a linear combination of the columns of A with
coefficients given by the (respective) entries of x.

5. Example.
[

3 1 −1
2 −1 5

] 


2
−1
−4


 =

[
9

−15

]

6. A vector of the form
c1x(1) + c2x(2)

where c1 and c2 are scalars, is known as a linear combination of the vectors x(1) and x(2).

For a fixed matrix A, the product Ax is linear in x, i.e., it has the property that

A(c1x(1) + c2x(2)) = c1Ax(1) + c2Ax(2)

for any vectors x(1), x(2) and scalars c1, c2. This is known as the superposition property, and
is easily proved by considering the ith entry on each side:

n∑

j=1

aij

(
c1x

(1)
j + c2x

(2)
j

)
= c1




n∑

j=1

aijx
(1)
j


 + c2




n∑

j=1

aijx
(2)
j




We say that a m×n matrix A represents a linear transformation of Rn to Rm. Such a linear
transformation is also referred to as a linear system with n-dimensional input vector x and
m-dimensional output vector y:

Ax y = Ax

7. Example. Suppose the 2× n matrix A and the n-dimensional column vectors u and v are
such that

Au =
[ −1

4

]
and Av =

[
5

−2

]

Then

A(u− 2v) =
[ −11

8

]

21



8. Example. The linear transformation represented by the matrix

A =




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




is such that

A




x1

x2

x3

x4


 =




x3

x4

x1

x2




Thus the effect of applying A to an arbitrary vector x is to shift the entries of x up (or
down) by two positions in a circular fashion. This linear transformation is an example of a
permutation, and all permutations are linear.

9. Your task: You are given an image whose dimensions match those of a 36 inch (diagonal)
display with an aspect ratio of 16 (horizontal) to 9 (vertical). You want to display the image
on a 27 inch (diagonal) display with an aspect ratio of 4 (horizontal) to 3 (vertical) such that
the image is as large as possible without distortion or cropping. Find the matrix

[
a 0
0 a

]
= aI

which accomplishes this. (Note: I is the identity matrix.)

10. Conversely, every linear transformation A : Rn → Rm has a m × n matrix associated with
it. This can be seen by expressing an arbitrary input vector x as a linear combination of the
standard unit vectors:

x = x1e(1) + · · ·+ xne(n)

By linearity of A( · ), the output vector y = A(x) equals

y = x1A(e(1)) + · · ·+ xnA(e(n))

If we form a m×n matrix A = [aij ] using A(e(1)), . . . , A(e(n)) as its columns (in that order),
then the output vector y (above) is, in effect, a linear combination of the columns of A with
coefficients x1, . . . , xn. In other words,

(∀i) yi =
n∑

j=1

aijxj

and thus y = A(x) is also given by
y = Ax

11. Example. If the linear transformation A( · ) : R3 → R3 is such that

A







1
0
0





 =




3
−1

0


 , A







0
1
0





 =



−1

5
4


 and A







0
0
1





 =




1
−1

1



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then the matrix A of A(·) is given by

A =




3 −1 1
−1 5 −1

0 4 1




12. Example. Suppose now that A( · ) : R2 → R2 represents the projection of a two-dimensional
vector x = (x1, x2) onto the horizontal (i.e., x1) axis. From vector geometry, we know that
this is a linear transformation: the projection of a sum of (possibly scaled) vectors is the
sum of their projections. We can therefore obtain the matrix A by considering the result of
applying A(·) to the two unit vectors (1, 0) and (0, 1). We have

A
[

1
0

]
=

[
1
0

]
, A

[
0
1

]
=

[
0
0

]
,

and consequently

A =
[

1 0
0 0

]

13. Example. Similarly, the rotation of a two-dimensional vector through a fixed angle is linear:
when two vectors are rotated through the same angle, their (possibly scaled) sum is also
rotated through that angle. If B is the matrix representing a counterclockwise rotation by
300, then

B
[

1
0

]
=

[ √
3/2
1/2

]
, B

[
0
1

]
=

[ −1/2√
3/2

]
,

and thus

B =
[ √

3/2 −1/2
1/2

√
3/2

]

Question: How were these values obtained?

14. If A is m× p and B is p×n, then the product AB is the m×n matrix whose (i, j)th element
is the dot product of the ith row of A and the jth column of B:

(AB)ij =
p∑

k=1

aikbkj

The number of columns of A must be the same as the number of rows of B (equal to p in
this case, and also referred to as the inner dimension in the product).

15. Example. If

A =
[

2 −1 4
1 0 −1

]
and B =




1 −2
0 3
1 5




then

AB =
[

6 13
0 −7

]
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LECTURE 8

Topic: cascaded linear transformations; row and column selection; permutation matrices; matrix
transpose

Textbook References: sections 2.2.3, 2.3

Key Points:

• AB represents two linear systems connected in cascade (tandem, series), with system A
downstream from system B.

• Associativity: (AB)C = A(BC) def= ABC

• Commutativity does not hold in general, i.e., AB 6= BA.

• To select the jth column of a matrix, we right-multiply it by the jth standard unit vector of
the appropriate size. To select the ith row of a matrix, we left-multiply it by the ith standard
unit vector.

• Transposition and multiplication: (AB)T = BTAT

• A permutation matrix is a square matrix whose columns are distinct standard unit vec-
tors. Right-multiplication by a permutation matrix results in column permutation; left-
multiplication results in row permutation.

• If P is a permutation matrix, then PTP = I (the identity matrix). Thus the inverse of a
permutation matrix is its transpose.

Theory and Examples:

1. Viewed as a linear transformation, the product AB represents the cascade (series) connection
of B followed by A, as shown below. This means that for a n-dimensional input vector x,
the output y is given by

y = (AB)x = A(Bx)

Ax y = ABxB
Bx

To see why this is so, take x = e(j), i.e, any standard unit vector in Rn. Then

• (AB)e(j) is the jth column of the matrix AB. By definition of AB, the ith entry in that
column equals the dot product of the ith row of A and the jth column of B.

• Be(j) is the jth column of B. Thus the (i, j)th entry of A(Be(j)) equals the dot product
of the ith row of A and the jth column of B.

Therefore (AB)x = A(Bx) for x = e(j). This result extends to all vectors in Rn. (Question:
Why?)
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Ax y = ABCxBC

2. Associativity: (AB)C = A(BC) def= ABC, with obvious extensions to products involving
four or more matrices.

3. In general,
AB 6= BA

i.e., matrix multiplication is not commutative—even in cases where both products are well-
defined and have the same dimensions (this happens if and only if both A and B are square
matrices of the same dimensions). There are, however, exceptions.

4. Your task: Show that if A represents projection onto the horizontal axis and B represents
counterclockwise rotation by an angle equal to π/6, then AB 6= BA. This can be shown
both algebraically (i.e, by computing the products) and geometrically.

5. If A is a m× n matrix and e(j) is the jth standard unit vector in Rn×1, then

Ae(j) = jth column of A

This follows directly from the definition of the matrix-vector product, where Ax is a linear
combination of the columns of A with coefficients given by the respective entries of x.

6. Example. Suppose

A =




α β γ δ
κ λ µ ν
φ χ ψ ω




Then

A




0
1
0
0


 =




β
λ
χ


 , A




0
1
0
2


 =




β + 2δ
λ + 2ν
χ + 2ω


 and A




0 0
1 0
0 0
0 2


 =




β 2δ
λ 2ν
χ 2ω




7. The columns of a m×n matrix A are permuted by selecting all of them in a particular order.
This amounts to taking the product AP, where P is a permutation matrix, i.e.,

• the columns of P are the standard n-dimensional unit vectors (in any order); equivalently,

• the rows of P are the standard n-dimensional unit vectors (in any order).

25



8. Example.



α β γ δ
κ λ µ ν
φ χ ψ ω







0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


 =




γ δ α β
µ ν κ λ
ψ ω φ χ




9. If A is m × n, its transpose AT is the n ×m matrix whose (i, j)th entry equals the (j, i)th

entry of A. Thus the ith row of AT equals the (transpose of) the ith column of A, and vice
versa (for all i).

A square matrix A is symmetric if A = AT (i.e., ith row and ith column are the same vector).

10. Example.

[
a b c

]T =




a
b
c







5 1
2 4
6 7




T

=
[

5 2 6
1 4 7

]




1 2 3
2 4 5
3 5 6




T

=




1 2 3
2 4 5
3 5 6


 (symmetric matrix)

11. The identity
(AB)T = BTAT

(assuming that the product AB exists) can be shown by considering the (i, j)th element of
(AB)T , i.e., the (j, i)th element of AB. This equals the dot product of the jth row of A and
the ith column of B; which is the same as the dot product of the the jth column of AT and
the ith row of BT . This is just the (i, j)th element of BTAT .

12. Row selections on a m×n matrix A are accomplished by left-multiplying A by the appropriate
standard (row) unit vectors:

(e(i))TA = ith row of A

If P is a m×m permutation matrix, then PA is a permutation of the rows of A.

Question: If n = m and AP puts the columns of A in a particular order, what should Q be
so that QA results in the same reordering applied to row indices (instead of column indices)?

13. Example.

[
0 0 1

]



α β γ δ
κ λ µ ν
φ χ ψ ω


 =

[
φ χ ψ ω

]




0 0 1
1 0 0
0 1 0







α β γ δ
κ λ µ ν
φ χ ψ ω


 =




φ χ ψ ω
α β γ δ
κ λ µ ν



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14. If P is a permutation matrix, then
PTP = I

This is shown by considering the (i, j)th element of PTP, which equals the dot product of
the ith and jth columns of P. Since the columns of P are distinct standard unit vectors, it
follows that the dot product equals unity if i = j, zero otherwise.
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LECTURE 9

Topic: introduction to matrix inversion; Gaussian elimination

Textbook References: sections 2.4, 2.5, 2.6

Key Points:

• A n× n matrix A is nonsingular, i.e., it possesses an inverse A−1, if and only if the equation
Ax = b has a unique solution x (equal to A−1b) for every b.

• AA−1 = I

• (AT )−1 = (A−1)T

• (AB)−1 = B−1A−1

• A triangular matrix is nonsingular if all entries on its leading diagonal are nonzero. It can be
inverted using forward or backward substitution.

• In Gaussian elimination, the n × n system of simultaneous equations Ax = b is reduced to
an upper triangular system Ux = c, which is then solved using backward substitution.

• The process of obtaining U from A (and c from b) is known as forward elimination, and
proceeds in n − 1 steps. In the jth step, the jth equation is used for eliminating variable xj

from equations below it.

• A square matrix A is nonsingular if and only if exactly one variable (no more) is eliminated
in each step of the forward elimination process.

Theory and Examples:

1. Given the output of a linear system for which the matrix A is known, is it possible to
determine its input? This would involve solving the equation

Ax = b

where x is the unknown input vector of dimension n, and y = b is the observed output vector
of dimension m.

2. If the entries of A are random real numbers (with infinite precision), the following statements
can be made about Ax = b in probabilistic terms:

• If m < n, any vector b is almost certainly a valid system output, in which case a solution
x exists. The solution is not, however unique, and thus the “true” input vector cannot
be determined.

• If m > n, a randomly chosen vector b is almost certainly not a valid system output, in
which case no solution x exists.

• If m = n, every vector b is almost certainly a valid system output corresponding to a
unique system input x. A solution x therefore exists for every b, and is unique.

28



3. There are, of course, exceptions to the “almost certain” rules given above. For example, in
the case m = n = 2, taking A as any of the matrices

[
0 0
0 0

]
,

[
1 0
0 0

]
or

[
1 3
2 6

]

will result in the equation Ax = b having a solution for certain values of b only, and that
solution will not be unique.

(Your task: In each case, find a vector b which is not expressible as a linear combination of
the columns of A. Also, show that Ax = 0 has multiple solutions x.)

4. The case m = n is by far the most important, and is the key to understanding what happens
in the other two cases (m < n and m > n). A random choice of a n× n matrix A is almost
certain to have the property known as nonsingularity:

A square matrix A is nonsingular if and only if the equation Ax = b has a unique solution
for every vector b. It is singular otherwise.

5. If A is nonsingular, every vector b has a unique x associated with it, such that Ax = b. It is
not difficult to show that the mapping of b’s to x’s is linear, i.e., there is a matrix A−1 such
that

Ax = b ⇔ x = A−1b

Thus the inverse A−1 exists if and only if A is nonsingular.

6. Useful properties of the inverse of a nonsingular matrix A:

• (A−1)−1 = A

• AA−1 = A−1A = I

• AT is also nonsingular, and
(AT )−1 = (A−1)T

This follows easily by taking the transpose of both sides of AA−1 = I.

• If B is also nonsingular, then so is the product AB, and

(AB)−1 = B−1A−1

yABx

y A B x
-1-1
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7. Permutation matrices are nonsingular, and their inverse is given by their transpose: recall
that PTP = I. Thus for example,




0 1 0
0 0 1
1 0 0



−1

=




0 0 1
1 0 0
0 1 0




8. A diagonal matrix D is defined by the property that dij = 0 for i 6= j; i.e., all entries except
those on the leading diagonal are zero. The equation Dx = b is equivalent to

(∀i) diixi = bi

and has a unique solution given by xi = d−1
ii bi for all i. This requires that all dii’s are nonzero,

which is both a necessary and sufficient condition for a diagonal matrix D to be nonsingular.

Thus for αβγ 6= 0, we have



α 0 0
0 β 0
0 0 γ



−1

=




1/α 0 0
0 1/β 0
0 0 1/γ




9. Triangular matrices are of particular importance in both the theoretical development of linear
algebra and its practical, real-world applications. The defining feature of a lower (or upper)
triangular matrix is that all elements above (or below, respectively) the leading diagonal are
zero. If L is lower triangular, the equation Lx = b is expanded as

`11x1 = b1

`21x1 + `22x2 = b2

...
...

. . .
...

`n1x1 + `n2x2 + · · ·+ `nnxn = bn

and is easily solved using the procedure known as forward substitution: x1 is obtained from
the first equation, then substituted into the second equation to obtain x2, and so on and
so forth for the remaining xi’s. Forward substitution works provided that all the leading
diagonal coefficients `ii are nonzero. This condition is both necessary and sufficient for L to
be nonsingular.

Upper triangular matrices U have similar properties. The equation Ux = b is solved by
backward substitution (i.e., xn → xn−1 → . . . → x1) provided again that all the leading
diagonal elements of U are nonzero.

10. Example. Forward substitution in

Lx =




2 0 0
5 −1 0
1 −2 3







x1

x2

x3


 =




b1

b2

b3




gives
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2x1 = b1 ⇒ x1 =
b1

2
5b1

2
− x2 = b2 ⇒ x2 =

5b1

2
− b2

b1

2
− 2

(
5b1

2
− b2

)
+ 3x3 = b3 ⇒ x3 =

3b1

2
− 2b2

3
+

b3

3

Therefore



x1

x2

x3


 =




1/2 0 0
5/2 −1 0
3/2 −2/3 1/3







b1

b2

b3


 ⇒ L−1 =




1/2 0 0
5/2 −1 0
3/2 −2/3 1/3




11. In general, the matrix-vector equation Ax = b, where A is n × n, represents a system of n
linear equations in n unknowns x1, . . . , xn. If A is nonsingular, the (unique) solution can be
found using Gaussian elimination and its variants.

12. The principle behind Gaussian elimination is the equivalence of

Ax = b and MAx = Mb

where M is a nonsingular n× n matrix. The solution is usually obtained in two phases, each
consisting of n− 1 steps:

• the forward elimination phase reduces the system to an equivalent upper triangular
system Ux = c;

• the backward substitution phase solves the upper triangular system and produces x.

13. We illustrate forward elimination for the 3× 3 equation

Ax =




2 1 −1
4 0 −1

−8 2 3







x1

x2

x3


 =




6
6

−10




Briefly:

• The first step eliminates the variable x1 from the second and third equations, while the
second step eliminates x2 from the third equation.

• In the jth step (where j = 1, 2), a multiple (×mij) of the jth row is added to each row
below it (i.e., with row index i > j).

• The multipliers mij (listed in the column labeled m) are determined by taking ratios of
entries in the jth column. The denominator of each ratio is the (j, j)th entry, which is
also known as the jth pivot (shown in a box).
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m x1 x2 x3 b

2 1 −1 6
−2 4 0 −1 6

4 −8 2 3 −10

2 1 −1 6
0 −2 1 −6

3 0 6 −1 14

2 1 −1 6
0 −2 1 −6
0 0 2 −4

14. Forward elimination has thus resulted in the upper triangular system of equations

2x1 + x2 − x3 = 6
−2x2 + x3 = −6

2x3 = −4

which is easily solved by backward substitution to produce x3 = −2 → x2 = 2 → x1 = 1,
i.e., x = [ 1 2 −2 ]T .

15. Gaussian elimination can be completed (as outlined above) provided all diagonal elements, or
pivots, obtained in the forward elimination phase are nonzero. If a zero pivot is encountered
in the jth ≤ n − 1 step, the jth equation cannot be used to eliminate xj from the equations
below it. This difficulty is resolved by a simple row swap provided one of those equations has
a nonzero coefficient for xj .

• If all zero pivots can be resolved by row swaps, and the the final form of the nth equation
has a nonzero coefficient for xn, then Ax = b has a unique solution x for every b, i.e.,
the matrix A is nonsingular.

• Otherwise—if at some jth step all remaining (unused) equations have a nonzero coeffi-
cient for xj , or if the final form of the nth equation has a zero coefficient for xn—the
matrix A is singular.
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LECTURE 10

Topics: inner products, norms and angles; projection

Textbook References: sections 2.10.1–2.10.4, 2.12.1

Key Points:

• The norm, or length, of a real-valued vector a is given by

‖a‖ = 〈a,a〉1/2 ,

where 〈· , ·〉 denotes inner (dot) product.

• The angle θ between two vectors a and b satisfies

cos θ =
〈a,b〉

‖a‖ · ‖b‖

• The (orthogonal) projection of b on a is the vector λa such that b − λa is orthogonal to a,
i.e., 〈b− λa, a〉 = 0. Therefore

λ =
〈a,b〉
‖a‖2

• The range (or column space) R(V) of the m× n matrix

V =
[

v(1) . . . v(n)
]

consists of all linear combinations of columns of V, i.e., vectors of the form Vc.

• The projection of a m-dimensional vector s onto the range R(V) of a matrix V is the unique
vector ŝ in R(V) with the property that s− ŝ is orthogonal to every column of V. It is the
point in R(V) closest to s.

• If the columns of V are pairwise orthogonal, then projection onto R(V) amounts simply to
projecting onto each column, then summing the projections.

• A m×m matrix V consisting of nontrivial (6= 0) pairwise orthogonal vectors is nonsingular.
Any vector s in Rm can be expressed as s = Vc, where c is found by projecting s onto each
of the columns of V.

Theory and Examples:

1. The m × m system Ax = b can be solved in a particularly simple way (without Gaussian
elimination) if any two columns of A have zero dot product. To determine the value of any
xj , we take dot products of both sides of the equation Ax = b with the jth column a = a(j)

(here 0i denotes a column vector of i zeros):

Ax = b

(aTA)x = aTb[
0T

j−1 aTa 0T
m−j

]
x = aTb
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In other words,

xj =
aTb
aTa

provided aTa 6= 0, i.e., a is not an all-zeros vector.

2. For real-valued vectors, the dot product is also known as inner product and plays an important
role in the development of vector geometry. If a and b are real and m-dimensional, their inner
product is denoted and given by

〈a,b〉 = aTb =
m∑

i=1

aibi

It is commutative, i.e.,
〈a,b〉 = aTb = bTa = 〈b,a〉 ,

and also linear in one of the two arguments when the other one is kept constant:

〈c1a(1) + c2a(2), b〉 = c1〈a(1),b〉+ c2〈a(2),b〉

3. The norm, or length, of a is defined by

‖a‖ = 〈a,a〉1/2 =

(
m∑

i=1

a2
i

)1/2

and is strictly positive unless a = 0. Scaling a by a constant c results in ‖a‖ being scaled by
|c|.

4. Two vectors a and b are orthogonal (denoted by a⊥b) if 〈a,b〉 = 0. This notion of orthogo-
nality agrees with geometry, since it implies that

‖a + b‖2 = 〈a + b, a + b〉
= 〈a,a〉+ 2〈a,b〉+ 〈b,b〉 = ‖a‖2 + ‖b‖2

5. From geometry, we know that the (orthogonal) projection of b onto a is the vector f = λa
such that b− f is orthogonal to a. This condition determines the value of λ:

〈b− λa,a〉 = 0 ⇔ λ =
〈a, b〉
‖a‖2

0 a

b

f
θ
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6. We also have ‖b‖ cos θ = λ‖a‖, and therefore

cos θ =
〈a,b〉

‖a‖ · ‖b‖
(assuming that neither a nor b is an all-zeros vector). The range of values of θ is [0, π].

7. Example. Consider the three vectors

v(1) = [ 5 1 3 1 ]T

v(2) = [ 1 3 −1 −5 ]T

v(3) = [ −6 6 −6 6 ]T

Then:

• ‖v(1)‖ = ‖v(2)‖ = ‖v(3)‖/2 = 6

• v(1)⊥v(2)

• the projection of v(3) onto v(1) equals −v(1)

• the angle between v(1) and v(3) equals 2π/3

8. As we saw earlier, the m ×m equation Ax = b can be solved easily using inner products if
the columns of A are pairwise orthogonal (and nontrivial, i.e., none is the all-zeros vector 0).
We will rewrite this equation as

Vc = s ,

where, instead of considering V as a linear system (with input c and output s), we will adopt
a different view. Specifically,

V =
[

v(1) . . . v(n)
]

is an ordered set of m orthogonal reference vectors v(j), which when properly combined
linearly—with coefficients cj—can produce any m-dimensional vector s. The equation Vc = s
(with c unknown) is therefore a signal representation problem.

9. If the matrix V has n < m orthogonal columns, then the set of linear combinations of the
form Vc—known as the range of V and denoted by R(V)—does not include every vector in
Rm. In geometric terms, R(V) is a “flat” subset of Rm containing the origin, also known as
a linear subspace. For example, if V consists of n = 2 nontrivial orthogonal columns of length
m = 3, then R(V) is a two-dimensional plane in the three-dimensional Euclidean space R3.

In such cases, a generic vector s ∈ Rm cannot be represented exactly as Vc; at best, ŝ = Vc
approximates s. The linear least squares approximation of s by the columns of V is defined
by the property that the distance between s and ŝ is a minimum. It is therefore obtained by
minimizing

‖s−Vc‖
over all n-dimensional vectors c.
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10. The minimization can performed equivalently on the squared distance

‖s−Vc‖2 = 〈s−Vc, s−Vc〉
= ‖s‖2 − 2cTVT s + cTVTVc

= ‖s‖2 +
n∑

j=1

(
‖v(j)‖2c2

j − 2〈v(j), s〉cj

)

where the last equality was obtained using the fact that VTV is a diagonal matrix with each
(j, j)th entry given by ‖v(j)‖2. It suffices to minimize each term in the

∑
j sum, which is a

quadratic in cj . Noting that
t2 − at = t(t− a)

is minimized at t = a/2, we obtain the solution

cj =
〈v(j), s〉
‖v(j)‖2

(1 ≤ j ≤ n)

11. The coefficients c1, . . . , cj are the same as those used for projecting s onto v(1), . . . ,v(n),
respectively. Thus

ŝ = Vc =
n∑

j=1

cjv(j)

is the sum of the projections of s onto each one of the columns of V.

The difference s − ŝ, known as the error vector, is orthogonal to each of the columns of V.
This follows from the fact that for a given j, s− cjv(j) is orthogonal to v(j); and

∑
i6=j civ(i)

is orthogonal to v(j) also.

These results are extensions of familiar facts in three-dimensional Euclidean geometry:

• The distance of a fixed point s from variable point on a (two-dimensional) plane con-
taining the origin is minimized at the projection of s onto that plane; the projection the
unique vector ŝ such that s− ŝ is orthogonal to every vector on the plane.

• If v(1) 6= 0 and v(2) 6= 0 are two orthogonal vectors on the plane, then the projection ŝ
of s onto the plane can be formed by taking the vector sum of the projections of ŝ onto
v(1) and v(2).

12. Example. The columns of

V = [ v(1) v(2) ] =




1 3
−2 4

1 5




are orthogonal and such that ||v(1)||2 = 6 and ||v(2)||2 = 50. The projection of s = [ −6 2 7 ]T

onto R(V) is given by
ŝ = c1v(1) + c2v(2) ,
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0

v
(2)

s

v
(1)

s

R(V)

where
c1 =

−6− 4 + 7
6

= −1
2

and c2 =
−18 + 8 + 35

50
=

1
2

Thus ŝ = [ 1 3 2 ]T . The error vector is given by s− ŝ = [ −7 −1 5 ]T . It is orthogonal to
both v(1) and v(2).
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LECTURE 11

Topics: complex matrices and vectors

Textbook References: 2.13

Key Points:

• For complex vectors, the inner product and norm are defined by

〈v,w〉 =
m∑

i=1

v∗i wi = (v∗)Tw

‖v‖ = 〈v,v〉1/2 =

(
m∑

i=1

|vi|2
)1/2

(v∗)T is also denoted as vH .

• The relationship between projection, orthogonality and linear least squares approximation is
the same for complex vectors as for real vectors.

Theory and Examples:

1. Switching from real-valued matrices and vectors to complex-valued ones is straightforward.

• There are no changes in basic algebraic operations (addition, scaling and multiplication)
other than the obvious use of complex algebra.

• Linear independence is defined as before, allowing complex coefficients in linear combi-
nations.

• Gaussian elimination follows the same procedure as before, but involves more computa-
tions.

2. The norm of a complex-valued vector v ∈ Cm is defined by

‖v‖ =

(
m∑

i=1

|vi|2
)1/2

Thus ‖v‖2 is the sum of squares of all real and imaginary parts contained in v. Since
|z|2 = z∗z, we also have

‖v‖2 =
m∑

i=1

v∗i vi = (v∗)Tv

The combination of the complex conjugate (·∗) and transpose (·T ) operators (in either order)
is the conjugate transpose, or Hermitian, operator ·H . Thus

‖v‖2 = vHv
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3. Next we define the inner product 〈v,w〉. In order to have 〈v,v〉 = ‖v‖2, we set

〈v,w〉 def=
m∑

i=1

v∗i wi = vHw

(Question: What would be an alternative definition?)

Care must be exercised in computing inner products, particularly when complex valued co-
efficients are involved. Note, in particular, that 〈w,v〉 = 〈v,w〉∗ and

〈αv, βw〉 = (α∗β)〈v,w〉 ( ⇒ ‖αv‖2 = |α|2 · ‖v‖2
)

4. Orthogonality of two complex-valued vectors is defined as in the real-valued case, i.e., by the
property that their inner product equals zero. Projections are developed in the same manner:

• The projection of s onto v 6= 0 is given by cv, where

〈v, s− cv〉 = 0 ⇔ c =
〈v, s〉
‖v‖2

• If the m×n matrix V has nontrivial columns v(1), . . . ,v(n) which are pairwise orthogonal,
then the projection of s onto the range of V is given by ŝ = Vc, where

cj =
〈v(j), s〉
‖v(j)‖2

(1 ≤ j ≤ n)

• The projection of s onto the range of V is also the linear least-squares approximation of
s by the columns of V, i.e., it minimizes the squared error norm

‖s−Vc‖2

• If n = m, then s = ŝ = Vc, i.e., projection yields an exact representation.

5. Example. (Your task: Verify the results.) The matrix

V =
[

v(0) v(1) v(2) v(3)
]

=




1 1 1 1
1 j −1 −j
1 −1 1 −1
1 −j −1 j




has orthogonal columns, each column having norm equal to 2:

VHV =




4 0 0 0
0 4 0 0
0 0 4 0
0 0 0 4


 = 4I

The inverse of V is given by

V−1 =
1
4
VH (Question: Why?)
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6. (Example, continued.) Any vector s ∈ C4 can be expressed as

s = Vc

where the coefficients in c are found by projecting s onto the appropriate columns in V. In
this case, all columns have the same norm (equal to 2), so we simply have

c = VHs/4

For instance,

s =




−3
1
1
9


 ⇒ c =




2
−1 + 2j
−3

−1− 2j




(Your task: Verify the algebra.) Therefore

s = 2v(0) + (−1 + 2j)v(1) − 3v(2) + (−1− 2j)v(3)

7. Expressing a vector s in the form Vc, where V is a square matrix with orthogonal columns,
can be viewed as a change of coordinates. The new coordinates c are in terms of the columns
of V, i.e., the new coordinate axes. Since these axes are orthogonal, we can again compute
the length of s using Pythagoras’ theorem, provided we take the length of each v(j) into
account. More precisely,

‖s‖2 = sHs = cHVHVc =
m∑

j=1

c∗jcj · ‖v(j)‖2 =
m∑

j=1

|cj |2 · ‖v(j)‖2

where the third equality is due to the fact that VHV is diagonal with each (j, j)th entry equal
to ‖v(j)‖2.

The same concept applies to the inner products of two vectors, i.e., it can be computed using
the new coordinates. Thus if

s = Vc and x = Vd ,

then

〈s,x〉 = sHx = cHVHVd =
m∑

j=1

c∗jdj · ‖v(j)‖2

8. In the previous example,

‖s‖2 = (−3)2 + 12 + 12 + 92 = 4
[
22 +

(
(−1)2 + 22

)
+ (−3)2 +

(
(−1)2 + (−2)2

)]
= 92

Also, if
x = v(0) − v(1) + 3v(2) + v(3) ,

then

〈s,x〉 = 4
[
(2)(1) + (−1− 2j)(−1) + (−3)(3) + (−1 + 2j)(1)

]
= −28 + 16j

(Your task: Compute this inner product directly using the entries of s and x.)
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9. The matrix V of the previous example plays a special role in signal analysis.

• Expressing an arbitrary vector as a linear combination of the orthogonal columns of V
involves the computation of four inner products; those inner products are referred to as
a discrete Fourier transform (DFT) of length N = 4.

• The columns of V, namely

v(0), v(1), v(2) and v(3)

are formed by raising, respectively,

j0 = 1, j, j2 = −1, and j3 = −j

to powers n = 0, 1, 2, 3. This means that the nth entry of each column is given by ejωn,
where

ω = 0, π/2, π and 3π/2 (respectively)

• The four columns of V are therefore complex sinusoidal vectors whose frequencies are
uniformly spaced over the interval [0, 2π)—or around the unit circle, depending on how
you look at them.

• The four sinusoids involved here have fundamental periods 1, 4, 2 and 4. Therefore they
all satisfy x[n] = x[n+4]. There are no other values of ω ∈ [0, 2π) for which ejωn repeats
itself every four samples.

10. As it turns out, the matrix V can be generalized to N dimensions, where it is defined as the
N×N matrix whose kth column v(k) is a complex sinusoidal vector of frequency k(2π/N) and
initial (i.e., topmost) value equal to 1. These mutually orthogonal vectors serve as building
blocks in discrete Fourier analysis, since any N -dimensional signal vector s can be expressed
as their linear combination with coefficients determined by the inner products 〈v(k), s〉. These
N inner products form the discrete Fourier transform of s.
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LECTURE 12

Topic: introduction to the discrete Fourier transform; basic examples

Textbook References: sections 3.1, 3.2

Key Points:

• The columns of the N ×N matrix V, defined by Vnk = ej(2π/N)kn, are sinusoidal vectors with
frequencies which are (all the distinct) multiples of 2π/N . These vectors are orthogonal and
such that

VHV = NI

• Any signal vector s can be expressed as a linear combination of such sinusoids: s = Vc, where
c = VHs/N .

Time Domain Frequency Domain

s DFT←→ S

s =
1
N

VS ←→ S = VHs

(Synthesis Equation) (Analysis Equation)
s = ifft(S) S = fft(s)

• The N -point vector s is a complex sinusoid of frequency ω = 2kπ/N if and only its DFT (or
spectrum) S contains all zeros except for S[k] 6= 0.

Theory and Examples:

1. The discrete Fourier transform (DFT) is a powerful computational tool. It allows us to resolve
finite-dimensional signal vectors into sinusoids of different frequencies, some of which may be
more prominent than others. For example, the 200-point signal vector s constructed in

n = (0:199).’;
s = 4.7*cos(0.12*pi*n-1.3) + ...

3.8*cos(0.19*pi*n+0.8) + ...
5.1*cos(0.23*pi*n+2.4) + ...
2.0*randn(size(n));

plot(n,s)

is the sum of three real-valued sinusoids plus noise. This is not at all that obvious from a
plot of the signal. If, however, we compute

S = fft(s);
bar(abs(S))

then we obtain a symmetric graph with three clear peaks on either half. These peaks corre-
spond to the main frequency components at ω = (0.12)π, (0.19)π and (0.23)π. Based on this
information, we can characterize the signal s as a sum of three sinusoids plus noise.
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2. The MATLAB command FFT computes the DFT S of a signal vector s. S is a complex-
valued vector of the same size as s, whose entries reflect the relative amounts of the sinusoidal
components of s. The number of frequencies involved is the same as the size of s, and as we
will soon see, these frequencies are uniformly spaced in [0, 2π).

3. The principle behind the DFT is already familiar to us: a vector s of size N is expressed as
a linear combination of the columns of a N ×N matrix V, i.e.,

s = Vc

Each column of V is a complex-valued sinusoid, i.e., it is given by the formula ejωn, where n
is the row index representing time. No two columns use the same frequency ω; moreover, the
N frequencies are chosen such that the columns of V are orthogonal:

VHV = diagonal matrix

This simplifies the computation of the coefficients c, since

(VHV)c = VHs

reduces to a diagonal system of equations. (The DFT S is defined simply as Nc.)

4. We have already encountered the matrix V in the case N = 4:

V =
[

v(0) v(1) v(2) v(3)
]

=




1 1 1 1
1 j −1 −j
1 −1 1 −1
1 −j −1 j




Each column (from left to right) is a complex-valued sinusoid of frequency

ω = 0, π/2, π and 3π/2

Note that the four frequencies are uniformly spaced over [0, 2π) (or the unit circle).

5. In the general case (i.e., for arbitrary N), the frequencies of the N sinusoids are also uniformly
spaced over [0, 2π). Specifically, the kth column of V (starting with k = 0) is a complex-valued
sinusoid of frequency

ω = k · 2π

N

This choice of ω makes the sinusoid ejωn periodic with period equal to N or a submultiple
thereof. No other values of ω result in this property.

If we set v = ej(2π/N), then the columns of V are formed by raising the complex constants

v0 = 1, v, v2, . . . , vN−1

to powers n = 0 : N − 1. These N complex numbers are precisely the roots of zN = 1.
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6. The orthogonality of the columns of V can be shown using the geometric sum formula

1 + z + z2 + · · ·+ zN−1 =
{

(1− zN )/(1− z), z 6= 1;
N, z = 1.

If v(k) and v(`) are two different columns of V, then

〈v(k),v(`)〉 =
N−1∑

n=0

v(`−k)n = 0

(since v(`−k)N = 1). On the other hand,

〈v(k),v(k)〉 =
N−1∑

n=0

v0 = N

This establishes the general result
VHV = NI

7. Example. In the case N = 6, the Fourier frequencies are

ω = 0,
π

3
,

2π

3
, π,

4π

3
,

5π

3

and the columns of V are sinusoids at these frequencies:

V =




1 1 1 1 1 1
1 1

2 + j
√

3
2 −1

2 + j
√

3
2 −1 −1

2 − j
√

3
2

1
2 − j

√
3

2

1 −1
2 + j

√
3

2 −1
2 − j

√
3

2 1 −1
2 + j

√
3

2 −1
2 − j

√
3

2
1 −1 1 −1 1 −1
1 −1

2 − j
√

3
2 −1

2 + j
√

3
2 1 −1

2 − j
√

3
2 −1

2 + j
√

3
2

1 1
2 − j

√
3

2 −1
2 − j

√
3

2 −1 −1
2 + j

√
3

2
1
2 + j

√
3

2




In this case, v = ej(2π/6) = ejπ/3 and Vnk = vnk = ej(π/3)kn.

If s = [ 1 2 3 6 5 4 ]T , then the coefficients c in s = Vc are quickly found using

c = fft([1 2 3 6 5 4].’)/6

By hand, we have ck = 〈v(k), s〉/6. Thus for example (note the complex conjugation!),

c0 =
1
6
(1 + 2 + 3 + 4 + 5 + 6) =

7
2

c1 =
1
6

(
1 + (1− j

√
3) +

3
2
(−1− j

√
3)− 6 +

5
2
(−1 + j

√
3) + 2(1 + j

√
3)

)
= −1 + j

√
3

3

c5 =
1
6

(
1 + (1 + j

√
3) +

3
2
(−1 + j

√
3)− 6 +

5
2
(−1− j

√
3) + 2(1− j

√
3)

)
= −1− j

√
3

3
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8. An alternative—and equivalent—notation for the projection of s onto the columns of V
involves the discrete Fourier transform S, defined by

S def= VHs

This vector consists of the N inner products 〈v(k), s〉, where k = 0 : N − 1. Since the index
k represents frequency (the frequency ωk = k(2π/N)), the DFT vector S is a signal in the
so-called frequency domain. It is also known as the spectrum of s.

9. The projection coefficients (in the previous notation) are given by

c =
1
N

VHs =
1
N

S

Thus
s = Vc =

1
N

VS

The signal s is also referred to as the inverse DFT of its spectrum S.

10. The matrix V is symmetric, since Vnk = ej(2π/N)kn = Vkn. Therefore

VH = V∗ def= W

We will examine the Fourier matrix V and its complex conjugate W in detail later on.

11. Example. To understand the meaning of the DFT (or spectrum), suppose

s DFT←→ S =
[

1 0 0 0 0 0 0 0
]T

Both s and S are of size N = 8. Since S has only one nonzero entry, s can be formed using
one column of V only, namely the k = 0th column (= v(0)). This means that s consists of
a single sinusoidal component at frequency ω = 0 · (2π/8) = 0; that sinusoid is, of course,
constant in time. Thus s is a constant vector, and its value can be found from the synthesis
equation:

s =
1
8
VS =

1
8
v(0)

i.e.,

s =
1
8

[
1 1 1 1 1 1 1 1

]T

Your task: Verify this result using the IFFT command in MATLAB.

12. Like any DFT pair, the pair s ←→ S in the above example can be also obtained in the reverse
direction, i.e., starting from

s =
1
8

[
1 1 1 1 1 1 1 1

]T =
1
8
v(0)

and using the analysis equation
S = VHs
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The right-hand side computes the inner product of each column of V with s. Since s is a
scaling of the zeroth column of V, and since the columns of V are orthogonal, the result is

S =
1
8

[
8 0 0 0 0 0 0 0

]T =
[

1 0 0 0 0 0 0 0
]T

Your task: Verify this calculation using the FFT command in MATLAB.

This example can be generalized to any DFT that has a single nonzero entry.
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LECTURE 13

Topic: examples of the DFT and its inverse; DFT of a real-valued signal

Textbook References: sections 3.2, 3.3

Key Points:

• The N -point vector s is a complex sinusoid of frequency ω = 2kπ/N if and only its DFT (or
spectrum) S contains all zeros except for S[k] 6= 0.

• Linearity property of the DFT: s = αx + βy DFT←→ S = αX + βY

• The DFT S of a N -point real-valued signal s exhibits circular conjugate symmetry:

S[0] = S∗[0] and S[N − k] = S∗[k] , k = 1 : N − 1 (DFT 2)

• Every real-valued signal s can be expressed as

s[n] =
1
N

S[0] +
2
N
·

∑

0<k<N/2

|S[k]| cos
(

2πkn

N
+ ∠S[k]

)
+

1
N

S[N/2](−1)n

The second term (corresponding to frequency ω = π) is present only when N is even.

Theory and Examples:

1. In the previous lecture, we considered DFT vectors (or spectra) with a single nonzero entry.
The corresponding time domain-signals are Fourier sinusoids. Thus:

• If
S =

[
0 0 0 0 1 0 0 0

]T

then the time-domain signal s is a sinusoid of frequency ω = 4(2π/8) = π. Specifically,

s =
1
8
v(4) =

1
8

[
1 −1 1 −1 1 −1 1 −1

]T

since
s[n] =

1
8
ejπn =

(−1)n

8
, n = 0 : 7

• If
S =

[
0 0 0 1 0 0 0 0

]T

then s = v(3)/8. This is a sinusoid of frequency ω = 3(2π/8) = 3π/4, and is given by

s[n] =
1
8
ej(3π/4)n , n = 0 : 7

In other words,

s =
1
8

[
1 −

√
2

2 + j
√

2
2 −j

√
2

2 + j
√

2
2 −1

√
2

2 − j
√

2
2 j −

√
2

2 − j
√

2
2

]T
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• We now introduce a second nonzero entry in S, i.e., a second sinusoidal component in s.
Letting

S =
[

0 0 0 1 0 1 0 0
]T

we have

s =
v(3) + v(5)

8
which is the scaled sum of two columns of V. The corresponding frequencies are ω =
3π/4 (as before); and ω = 5π/4, which is the same frequency as ω = −3π/4 for complex
sinusoids. Since

ejωn + e−jωn = 2 cosωn

it follows that
s[n] =

1
4

cos(3πn/4) , n = 0 : 7

i.e.,

s =
1
8

[
2 −√2 0

√
2 −2

√
2 0 −√2

]T

Your task: Verify the results using the IFFT command in MATLAB.

2. The last example also demonstrates an important property of the DFT and its inverse, namely
linearity. Since both the analysis and synthesis equations involve multiplication of a variable
vector by a fixed matrix (W or V), we have

s = αx + βy ←→ S = αX + βY (DFT 1)

Based on this property and the DFT pairs obtained previously, we can also invert (for exam-
ple)

S =
[

1 0 0 3 −2 3 0 0
]T

The time-domain vector s is a linear combination of the vectors obtained earlier:

s[n] =
1
8

+
3
4

cos(3πn/4)− 1
4
(−1)n , n = 0 : 7

In MATLAB:

n = (0:7).’ ;
s = 1/8 - (-1).^n/4 + 3*cos(3*pi*n/4)/4 ;
S = fft(s)

3. In the last example, the real sinusoidal component

3
4

cos(3πn/4)

was formed by adding together two complex-valued sinusoids, at frequencies

ω =
3π

4
and ω =

5π

4

(
same as −3π

4

)
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namely the third and fifth Fourier frequencies for an eight-point vector. The choice

S[3] = S[5]

is an instance of a certain type of symmetry about the “middle” frequency index k = N/2 = 4,
which we will explore further. For the time being, note that a choice such as S[3] = 3 and
S[5] = −1 would have resulted in s 6= <e{s}. (Question: Why?)

4. As we will soon see, if a time-domain vector s is real-valued, then:

• the entries of the DFT S are not necessarily real; they are, however, symmetric (in a
sense soon to be defined) about k = N/2.

• knowing S, we can express s as a sum of real-valued sinusoids at Fourier frequencies, all
of which can be limited to the interval [0, π].

5. The aforementioned symmetry is revealed using the analysis equation

S = VHs

where S[k] is simply the inner product of the kth Fourier sinusoid v(k) and s. The sinusoids
v(k) and v(N−k) are complex conjugates of each other, since they are at frequencies

ω =
2πk

N
and ω =

2π(N − k)
N

= 2π − 2πk

N

(recall that (ejθ)∗ = e−jθ). This means that S[k] and S[N − k] can be written as

S[k] = (a + jb)T s = aT s + jbT s

S[N − k] = (a− jb)T s = aT s− jbT s

where a and b are real-valued vectors (consisting of cosines and sines, respectively). Since s
is real-valued, so are the dot products aT s and bT s, and therefore

S[N − k] = S∗[k] , k = 1 : N − 1

6. Your Task: Verify this property in MATLAB:

s1 = randn(9,1) ;
S1 = fft(s1) % (one real value and four complex conjugate pairs)
s2 = randn(10,1) ;
S2 = fft(s2) % (two real values and four complex conjugate pairs)

7. The property S[N − k] = S∗[k] is known as circular conjugate symmetry. If the indices
k = 0 : N − 1 are marked counterclockwise and uniformly on the unit circle with k = 0 at
angle θ = 0, then positions k and N − k are symmetric about the horizontal (real) axis.
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8. The indices k = 0 and k = N/2 deserve special mention. The first index corresponds to the
frequency ω = 0. Accordingly, S[0] is the inner product of the all-ones vector v(0) with s, and
is clearly real-valued. Therefore

S[0] = S∗[0] = s[0] + s[1] + · · ·+ s[N − 1]

The index k = N/2 arises only when N is even. The corresponding sinusoid v(N/2) has
frequency π, i.e., it is a real-valued vector consisting of alternating values 1 and −1. Therefore
S[N/2] is also real valued, and

S[N/2] = S∗[N/2] = s[0]− s[1] + · · · − s[N − 1]

9. Obviously, an arbitrary real-valued signal s has a complex-valued spectrum (DFT) S. This
complex vector is often expressed in polar form, entry by entry:

S[k] = |S[k]| · ej∠S[k]

This gives rise to two spectra:

• The amplitude, or magnitude, spectrum |S[k]|. Viewed as a vector, this is circularly
symmetric in k:

S[N − k] = S∗[k] ⇒ |S[N − k]| = |S[k]|

• The phase, or angle, spectrum ∠S[k]. Viewed as a vector, this is circularly antisymmetric
in k:

S[N − k] = S∗[k] ⇒ ∠S[N − k] = −∠S[k]

In the special cases k = 0 and k = N/2, the value of S[k] is real. Whenever S[k] is real,
∠S[k] = 0 if S[k] ≥ 0 and ∠S[k] = π (equivalent to −π) if S[k] < 0.

10. We can now generalize the example given earlier in order to express an arbitrary real-vector
of length N = 8 as a sum of real-valued sinusoids at Fourier frequencies 0, π/4, π/2, 3π/4
and π. Suppose the DFT of s is given by

S =
[

1 1 + 2j −4j 3− j −2 3 + j 4j 1− 2j
]T
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The synthesis equation

s =
1
8
VS

will again combine complex sinusoids with frequency indices k and N − k into a single real-
valued sinusoid. The coefficient of that sinusoid can be obtained by noting that if

S[k] = Aejφ and S[N − k] = Ae−jφ

then the N entries of the vector

S[k]v(k) + S[N − k]v(N−k)

are given (for n = 0 : N − 1) by the formula

Aejφejωn + Ae−jφe−jωn = 2A cos(ωn + φ)

where ω = k(2π/N).

The values of A = |S[k]| and φ = ∠S[k] are found by expressing S in polar form—i.e., in
terms of the amplitude and phase spectra. The final result is

s[n] =
1
8

+
√

5
4

cos
(πn

4
+ 1.1071

)
+ cos

(πn

2
− π

2

)
+
√

10
4

cos
(

3πn

4
− 0.3218

)
− 1

4
(−1)n
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LECTURE 14

Topics: circular shift and reversal; circular conjugate symmetry of the DFT and IDFT matrices;
implications of conjugation and circular reversal on the DFT

Textbook References: sections 3.2.2, 3.3.2, 3.4

Key Points:

• Px is a circular shift (downward by one position) in the entries of x. Rx is a circular reversal
in the entries of x. Fkx is the result of multiplying x by the kth Fourier sinusoid, entry by
entry.

• The columns and rows of V and W = V∗ exhibit circular conjugate symmetry.

•

Time Domain Frequency Domain

x =
1
N

VX ←→ X = Wx

x∗ ←→ RX∗

Rx ←→ RX

Theory and Examples:

1. A circular shift of an N -vector is the entry permutation described by

[ x[0] x[1] . . . x[N − 2] x[N − 1] ]T 7→ [ x[N − 1] x[0] x[1] . . . x[N − 2] ]T

and illustrated below.

0
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23
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6

7 8

9

9

0
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3
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5

6 7

8

P

The associated permutation matrix P (acting on the column vector x to produce Px) is the
N ×N matrix

P =




0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0




Pm (mth power of P) represents a circular shift by m positions, and PN = I.
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2. A circular reversal is the entry permutation described by

[ x[0] x[1] . . . x[N − 2] x[N − 1] ]T 7→ [ x[0] x[N − 1] . . . x[2] x[1] ]T

and illustrated above.

The associated permutation matrix R is

R =




1 0 . . . 0 0
0 0 . . . 0 1
0 0 . . . 1 0
...

... ↙ ...
...

0 1 . . . 0 0




Clearly, R2 = I.

3. The matrix F is not a permutation matrix. It is a N × N diagonal matrix whose leading
diagonal has the same entries as the k = 1st column of V (the sinusoid of frequency ω =
2π/N):

F =




1 0 0 . . . 0
0 v 0 . . . 0
0 0 v2 . . . 0
...

...
...

. . .
...

0 0 0 . . . vN−1




,

where v = ej(2π/N).

4. Fk is also a diagonal matrix. Its leading diagonal entries are given by the kth column of V.
The effect of the transformation

y = Fkx

is to multiply each entry of x by the corresponding entry in the kth Fourier sinusoid:

y[n] = ejk(2π/N)nx[n] , n = 0 : N − 1

Question: If N is even, how can you express the vector y given (for all n) by y[n] = (−1)nx[n]
in terms of F and x?

Note that if 1 is the all-ones column vector (same as v(0)), then the time-domain signal s and
its DFT S satisfy

S[k] = 1TF−ks and Ns[n] = 1TFnS
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5. Example. Express x(1) through x(6) (below) in terms of P, R, F and

x =
[

0 1 2 3 4 5
]T

• x(1) =
[

4 5 0 1 2 3
]T

• x(2) =
[

4 3 2 1 0 5
]T

• x(3) =
[

0 6 6 6 6 6
]T

• x(4) =
[

0 −4 −2 0 2 4
]T

• x(5) =
[

0 −1 2 −3 4 −5
]T

• x(6) =
[

0 2 0 6 0 10
]T

6. We have seen that the matrices V and W = V∗ are both symmetric. Their entries are integer
powers of

v = ej(2π/N) = w−1 = w∗

There are only N distinct such powers (e.g., v0 = 1 through vN−1), which are complex
numbers uniformly distributed around the unit circle. They all appear in the k = 1st column
of V, i.e., in v(1) = [ 1 v v2 . . . vN−1 ]T .

7. As we noted in the previous reading assignment, the kth and (N −k)th columns of V (namely
the sinusoids v(k) and v(N−k)) are complex conjugates of each other. The zeroth column v(0)

is clearly real-valued. Thus

v(0) = (v(0))∗ and v(N−k) = (v(k))∗ , k = 1 : N − 1

which means that the columns of V have the same circular conjugate symmetry property as
the DFT of a real-valued signal. The same is true for the rows of V, since V is symmetric.

8. The circular conjugate symmetry of the columns and rows of V can be expressed in terms of
the circular reversal operation defined earlier (which swaps pairs of indices k and N −k while
leaving index 0 in place). We have

V∗ = VRT = RV

Since R is symmetric and V∗ = W, we can rewrite this as

W = V∗ = VR = RV

and taking complex conjugates of all terms, we obtain

V = W∗ = WR = RW

In other words, the columns and rows of W also exhibit circular conjugate symmetry.

9. The symmetry properties of V and W are illustrated below, where equal values are denoted
by “=” and conjugate values by “∗=”. One of the equalities corresponds to RWR = W and
RVR = V. (Your Task: Prove both identities.)
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10. Obviously, modifying a signal x also changes its spectrum X. Our focus will be on certain
transformations of x that result in X changing in a well-structured manner.

11. (DFT 3) Taking the complex conjugate of x results in both complex conjugation and circular
reversal of the entries of X.

This is easily shown using the circular conjugate symmetry of W, i.e., WR = RW = W∗.
Thus if y = x∗, then

Y = Wy

= Wx∗

= RW∗x∗

= RX∗

12. (DFT 4) Circular reversal of x results in circular reversal of X.

Again, we use the circular conjugate symmetry of W. If y = Rx, then

Y = WRx

= RWx

= RX

13. Example. If we know that

[
1 j −2 2j

]T ←→ [ −1 + 3j 2 −1− 3j 4
]T

then we immediately obtain

[
1 −j −2 −2j

]T ←→ [ −1− 3j 4 −1 + 3j 2
]T

[
1 2j −2 j

]T ←→ [ −1 + 3j 4 −1− 3j 2
]T
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LECTURE 15

Topics: signal transformations and the DFT; duality; circular symmetry revisited

Textbook References: sections 3.4, 3.5

Key Points:

Time Domain Frequency Domain

x =
1
N

VX ←→ X = Wx

Pmx ←→ F−mX

Fmx ←→ PmX

X ←→ NRx

• Every DFT pair has a dual: if x ←→ X, then X ←→ NRx.

• Circular conjugate symmetry in either domain (time or frequency) implies exclusively real
values in the other domain, and vice versa. If a signal is both real-valued and circularly
symmetric, then so is its spectrum.

Theory and Examples:

1. Let us take a closer look at circular shifts of the rows and/or columns of V and W. The
diagonal matrix F (whose leading diagonal consists of the entries of v(1)) is implicitly involved
here. If 1 is the all-ones column vector, then we can write

V =
[

1 F1 F21 . . . FN−11
]

A circular shift on the columns of V is obtained by right-multiplying it by PT = P−1,
resulting in

VP−1 =
[

FN−11 1 F11 . . . FN−21
]

=
[

F−11 1 F11 . . . FN−21
]

= F−1V

Similarly, a circular shift in the rows of V (which are given by 1TFn) results in

PV = VF−1

These results can be generalized to any integer (positive or negative) power m of P:

VPm = FmV , PmV = VF−m

and can be extended to W by taking complex conjugates:

WPm = F−mW , PmW = WFm
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2. (DFT 5) If we circularly shift the entries x by m positions (m positive or negative), then the
entries of X are multiplied by those of the (N −m)th Fourier sinusoid.

To see this, we let y = Pmx. Using one of the identities derived above, we obtain

Y = WPmx

= F−mWx

= F−mX

= FN−mX

As it turns out, a similar (though not identical) property holds with the two domains (time
and frequency) interchanged:

3. (DFT 6) If we multiply the entries of x by those of the mth Fourier sinusoid, then the entries
of X undergo a circular shift by m positions.

Indeed, if y = Fmx, then

Y = WFmx

= PmWx

= PmX

4. Example. If

[
a b c d e f

]T ←→ [
A B C D E F

]T

then
[

d e f a b c
]T ←→ [

A −B C −D E −F
]T

[
a −b c −d e −f

]T ←→ [
D E F A B C

]T

[
2a b −c −2d −e f

]T ←→ [
F + B A + C B + D C + E D + F E + A

]T

Your task: Derive each of the three new pairs.

5. The similarity between properties DFT 5 and DFT 6, both of which involve circular shift
in one domain and multiplication by a Fourier sinusoid in the other, is an instance of time-
frequency duality. Duality stems from the fact that the linear transformations involved in the
analysis and synthesis equations differ only by a complex conjugate (since W = V∗) and a
scaling factor 1/N .

6. Every time we compute a DFT pair x ←→ X, we also obtain a second DFT pair with very
little additional algebra. The two pairs are known as duals of each other, and are characterized
by the feature that the two vectors x and X are swapped between the two domains. In precise
terms:
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7. (DFT 7) If x ←→ X, then

y = X ←→ Y = NRx

This can be proved by using the circular conjugate symmetry of W:

Y = Wy

= WX

= RVX

= NRx

(Equivalently, RX ←→ Nx.)

8. Example. If
[

a b c d e f
]T ←→ [

3 1− j 2 + j −1 2− j 1 + j
]T

then
[

3 1− j 2 + j −1 2− j 1 + j
]T ←→ 6

[
a f e d c b

]T

9. We know (from DFT 2 or DFT 3) that

x = x∗ ←→ X = RX∗

i.e., a real-valued signal has a circularly conjugate symmetric spectrum. As a dual property,
we have that

x = Rx∗ ←→ X = X∗

Your task: Prove this.

10. If x is both real and circularly symmetric, then so is its spectrum X. In other words,

x = x∗ = Rx ←→ X = X∗ = RX

(The modifier “conjugate” is redundant in this case.)

11. Example. Verify in MATLAB that

x =
[ −1 3 2 1 4 1 2 3

]T

has a real and circularly symmetric DFT X.

Question: If the signal x[n] is expressed as a sum of five real-valued Fourier sinusoids, what
special features will those sinusoids have?

12. In regard to the transformations R, P and F introduced so far:

• If x is real-valued, and/or if x is circularly conjugate symmetric, then so is Rx.
• If x is real-valued, then so is Pmx for any m. If x is circularly conjugate symmetric,

then so are PN/2x and (Pm + P−m)x for any m.
• If x is circularly conjugate symmetric, then so is Fmx for any m. If x is real-valued,

then so are FN/2x and (Fm + F−m)x for any m.

Your task: Prove these facts. Use the vector in the previous example and the functions
OFLIP, OSHIFT and FDIAG (given in M-files) to illustrate these statements in MATLAB.
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LECTURE 16

Topics: multiplication and circular convolution; periodic extension of a vector

Textbook References: sections 3.6, 3.7

Key Points:

• The circular convolution of two N -length vectors a and b is the N -length vector a~b whose
nth entry is given by aTPnRb.

• If a ¦ b denotes the element-by-element product of a and b, then

x ¦ y ←→ 1
N

X ~ Y

x ~ y ←→ X ¦Y

• If x is formed by concatenating M copies of the L-point vector s, then the DFT X is obtained
by inserting M − 1 zeros between consecutive entries of S, and scaling the result by M .

Theory and Examples:

1. The element-by-element product x ¦ y of two N -point vectors x and y is defined by

(x ¦ y)[n] = x[n]y[n] , n = 0 : N − 1

Its DFT can be obtained directly from X and Y using a procedure known as circular convo-
lution.

2. If s = x ¦ y, then for every frequency index k,

S[k] =
N−1∑

n=0

x[n]y[n]v−kn

The product y[n]v−kn is the nth entry of the vector

y ¦ v(N−k) = F−ky

We can therefore write
S[k] = xTF−ky

Using the synthesis equation; known facts about V; and the analysis equation, we obtain

S[k] =
1
N

(VX)TF−ky

=
1
N

XTVF−ky

=
1
N

XTPkVy

=
1
N

XTPkRWy

=
1
N

XTPkRY
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3. The computation of the dot product aTPnRb for every index n = 0 : N − 1 is known as
circular convolution. The result is the vector a ~ b defined by

(a ~ b)[n] = aTPnRb

Circular convolution is commutative, i.e., a ~ b = b ~ a. This follows directly from the fact
that circular convolution in the frequency domain is equivalent to scaled multiplication in the
time domain; multiplication is, of course, commutative.

Also: The entries of a ~ b are equivalently expressed as

(a ~ b)[n] =
N−1∑

m=0

a[m] · b[(n−m) or (n−m + N)] , n = 0, 1, . . . , N − 1

where the argument if b is n−m whenever m ≤ n, and n−m + N otherwise.

4. Example. Let a =
[

κ λ µ ν
]T and b =

[
1 2 3 −2

]T . We then have

P0Rb =
[

1 −2 3 2
]T

P1Rb =
[

2 1 −2 3
]T

P2Rb =
[

3 2 1 −2
]T

P3Rb =
[ −2 3 2 1

]T

The four dot products aTPnRb ( = (PnRb)Ta) can be computed in a single matrix-vector
product:




1 −2 3 2
2 1 −2 3
3 2 1 −2

−2 3 2 1







κ
λ
µ
ν


 =




κ− 2λ + 3µ + 2ν
2κ + λ− 2µ + 3ν
3κ + 2λ + µ− 2ν

−2κ + 3λ + 2µ + ν


 = a ~ b

5. The DFT property

x ¦ y ←→ 1
N

X ~ Y (DFT 8)

established earlier also has a dual:

x ~ y ←→ X ¦Y (DFT 9)

Thus circular convolution in the time domain is equivalent to element-by-element multiplica-
tion in the frequency domain.

6. We can derive DFT 9 from DFT 8 using the duality property DFT 7. The pairs

Rx ←→ RX and Ry ←→ RY

have duals
RX ←→ Nx and RY ←→ Ny
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From DFT 8, we have

R(X ¦Y) = RX ¦RY ←→ N2

N
· (x ~ y)

Applying DFT 7 again, we obtain the required result:

N(x ~ y) ←→ N(X ¦Y)

7. Example. We circularly convolve the six-point vectors

a =
[

1 −2t 3t2 0 0 0
]T and b =

[
2 t −t2 2t3 0 0

]T

where the nth entry of each vector is a multiple of tn. As before, we have

a ~ b =




1 0 0 0 3t2 −2t
−2t 1 0 0 0 3t2

3t2 −2t 1 0 0 0
0 3t2 −2t 1 0 0
0 0 3t2 −2t 1 0
0 0 0 3t2 −2t 1







2
t

−t2

2t3

0
0




=




2
−3t

3t2

7t3

−7t4

6t5




The result a ~ b has the same distinctive property as a and b, namely the nth entry is a
multiple of tn. Furthermore, the polynomials obtained from a, b and a ~ b by summing the
entries of each vector together satisfy

(1− 2t + 3t2)(2 + t− t2 + 2t3) = 2− 3t + 3t2 + 7t3 − 7t4 + 6t5

This result is closely linked to DFT 9. In fact, the three time-domain vectors x, y and x~y
obtained by setting t = 1 in each of a, b and a~b have DFT’s given by the three polynomials
shown above, evaluated for t = v−k, where k = 0 : N − 1.

8. Polynomial multiplication in MATLAB:

p = [ 1 -2 3 ].’ ;
q = [ 2 1 -1 2 ].’ ;
r = conv(p,q)

Circular convolution using DFT 9:

x = [ 1 -2 3 0 0 0 ].’ ;
y = [ 2 1 -1 2 0 0 ].’ ;
X = fft(x) ;
Y = fft(y) ;
S = X.*Y ;
s = ifft(S)

The vectors r and s are identical.
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9. The synthesis equation

s[n] =
1
L

L−1∑

k=0

S[k]ej(2π/L)kn , n = 0 : L− 1

expresses the L-point signal vector s as weighted sum of L Fourier sinusoids over the index
range n = 0 : L − 1. Outside this range, each of these sinusoids repeats itself periodically
every L samples. Thus if we extend the same equation to all integers n, i.e.,

p[n] =
1
L

L−1∑

k=0

S[k]ej(2π/L)kn , n ∈ Z ,

we obtain an infinite periodic sequence of period L, such that

s = s[0 : L− 1] = p[0 : L− 1]

The sequence p[ · ] is a two-sided infinite periodic extension of the vector s.

10. For the time being, our focus will be on one-sided finite (N -point) periodic extensions of s,
as illustrated below. In other words,

x = x[0 : N − 1] = p[0 : N − 1]

s

0             L-1

p[n]

... ...
        -L                0                L               2L              3L         n

x

0                                                            N-1

11. The vector x is given by the same equation, i.e.,

x[n] =
1
L

L−1∑

k=0

S[k]ejk 2π
L

n , n = 0 : N − 1 (♠)

This is not, in general, a valid synthesis equation since the frequencies involved are not
necessarily Fourier frequencies for vectors of length N . Thus the DFT X is not immediately
obtained from S.

The case N = ML (i.e., where extension is by a whole number of periods) is the only
exception:

kth frequency for length L = k
2π

L
= kM

2π

ML
= (kM)th frequency for length ML

62



12. This means that in the case N = ML, the signal x is a sum of only L (out of ML possible)
sinusoids, and thus its spectrum has only L nonzero entries. The synthesis equation for x[n]
is

x[n] =
1

ML

ML−1∑

k=0

X[k]ej(2π/(ML))kn , n = 0 : ML− 1

Comparing this with (♠), we deduce that

X = M · [ S[0] 0T
M−1 S[1] 0T

M−1 . . . S[L− 1] 0T
M−1

]T

where 0n denotes a column vector of n zeros.

13. Example. Here L = 3, M = 4. If

s =
[

a b c
]T ←→ S =

[
A B C

]T
,

then
x =

[
a b c a b c a b c a b c

]T

has DFT
X =

[
4A 0 0 0 4B 0 0 0 4C 0 0 0

]T
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LECTURE 17

Topics: zero-padded extension of a vector; detection of sinusoids using the DFT

Textbook References: sections 3.7, 3.8

Key Points:

• If y is formed by appending (M − 1)L zeros to the L-point vector s, then the DFT Y will
contain the entries of S at positions 0, M, . . . , (L− 1)M .

• The frequency ω0 of a discrete-time complex sinusoidal vector

s[n] = ejω0n , n = 0 : L− 1

can be determined within 2π/N radians/sample, with N > L, by zero-padding s to length N
and locating the maximum in the resulting amplitude spectrum.

• The same technique can be used to estimate the frequency of a real-valued sinusoidal vector
reliably. It can be also applied to a noisy sum of sinusoids provided a sufficiently large number
of samples is taken.

Theory and Examples:

1. Another extension of interest is zero-padding, i.e, appending N − L zeros to s to obtain a
vector y of length N , as illustrated below.

y

0              10                                      35

s

0             9

There is no easy way of obtaining the DFT vector Y from S. However, in the special case
N = ML, it is possible to proceed in the reverse direction—i.e., obtain S from Y.

2. Again, the (kM)th Fourier sinusoid for length ML is the same as the kth one for length L,
only periodically repeated. This periodic repetition has no effect on the inner product with
y, since the nonzero portion of y is limited to indices 0 : L − 1, and is identical to s. This
means that, with N = ML, the two inner products

Y [kM ] =
N−1∑

n=0

y[n]e−jkM 2π
N

n =
N−1∑

n=0

y[n]e−jk 2π
L

n

and

S[k] =
L−1∑

n=0

s[n]e−jk 2π
L

n

are sums of the same nonzero terms, and are therefore equal.

Thus when N = ML, we can obtain S by taking every M th entry in Y.

64



3. Example. If (L = 3, N = 12)

y =
[

a b c 0 0 0 0 0 0 0 0 0
]T

has DFT
Y =

[
Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11

]T
,

then [
a b c

]T ←→ [
Y0 Y4 Y8

]T

and [
a b c 0

]T ←→ [
Y0 Y3 Y6 Y9

]T

4. Appending a large number of zeros (so that N À L) results in a very dense set of Fourier
frequencies in [0, 2π), and a spectrum Y which appears nearly continuous when plotted (e.g.,
as an amplitude spectrum and a phase spectrum) against ω. Thus zero-padding in the time
domain is a way of interpolating in the frequency domain.

5. An important application of the DFT is in the efficient detection of sinusoidal and other
periodic signals, often in the presence of noise. What makes the DFT a natural tool for
this task is the fact that it analyzes a discrete signal vector into a number of sinusoidal
components.

6. The equation
s(t) = A cos(Ω0t + φ) + ε(t) , t ∈ R

represents a single continuous-time sinusoid with additive noise ε(t). If we take L samples of
s(t) at times t = 0 : Ts : (L− 1)Ts, we obtain the vector s given by

s[n] = A cos(ω0n + φ) + ε[n] , n = 0 : L− 1

where
ω0 = Ω0Ts = 2π · f0

fs
= 2π · Ts

T0

We are interested in estimating Ω0, A and φ using the samples in s. The DFT S, and more
generally, the DFT of a zero-padded version of s, can be used for that purpose.

7. The simplest case arises when the frequency ω0 happens to be a Fourier frequency for the
L-point sample s. This occurs when

ω0 = k0
2π

L
⇔ f0

fs
=

Ts

T0
=

k0

L

for some integer k0. The DFT S will then be the sum of two vectors:

• The spectrum of A cos(ω0n + φ). Since ω0 is the kth
0 Fourier frequency, this spectrum

will have nonzero entries at k = k0 and k = L− k0 only, equal to

LA

2
· ejφ and

LA

2
· e−jφ ,

respectively. (Question: Where have we seen this before?)
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• The spectrum of the noise ε, which will have random entries spread over the L frequency
indices.

If the noise is small compared to the sinusoidal signal (large ‘signal-to-noise ratio’) the am-
plitude spectrum (modulus of S) will have two prominent peaks at frequency indices k0 and
L− k0, from which ω0 can be deduced. (Question: Why is aliasing a concern here?)

Estimates of A and φ can be obtained from the amplitude and phase spectra.

8. Example. The DFT was introduced earlier using a 200-point vector s consisting of three
sinusoids plus noise. The frequencies of the sinusoids coincided with the 12th, 19th and 23rd

Fourier frequencies.

n = (0:199).’ ;
s = 4.7*cos(0.12*pi*n-1.3) + ...

3.8*cos(0.19*pi*n+0.8) + ...
5.1*cos(0.23*pi*n+2.4) + ...
2.0*randn(size(n)) ;

S = fft(s) ;
bar(n,abs(S)) , grid

Note the three prominent peaks on each half of the amplitude spectrum, at the correct
frequency indices.

9. In almost all practical situations, ω0 will not be an exact Fourier frequency for the L-point
sample vector s. This means that even though s has a single dominant sinusoidal component,
its representation in terms of Fourier sinusoids will contain significant amounts of all (Fourier)
frequencies. Naturally, frequencies closer to ω0 and 2π − ω0 will be more prominent.

Your task: In the previous example, remove the noise (i.e., the fourth term in s) and
replace 0.12 by 0.12321, 0.19 by 0.19642 and 0.23 by 0.23419. Run again, and note how
the amplitude spectrum changes.

10. To see how the DFT behaves when ω0 is not a Fourier frequency, it is best to consider samples
of a complex sinusoid, i.e.,

s[n] = ejω0n , n = 0 : L− 1

As usual, the DFT S consists of the L inner products

〈v(ω), s〉 =
L−1∑

n=0

s[n]e−jk 2π
L

n

for k = 0 : L − 1. We will use the notation v(ω) to represent a L-point complex sinusoid of
frequency ω (in the expression above, ω = 2πk/L).

The inner product 〈v(ω), s〉 can be also computed for a denser set of frequencies ω in [0, 2π),
namely all multiples of 2π/N , where N > L. This is done by zero-padding s to length N and
computing a DFT. Taking N À L and plotting the resulting amplitude spectrum against ω
shows the behavior of |〈v(ω), s〉| in great detail. Most notably, it shows that this quantity is
maximized at ω = ω0.
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11. Example. Here L = 20 and ω0 = (0.317)(2π). First, the DFT of s is computed and plotted
against ω/(2π). Then, s is zero-padded to N=1,000 and another DFT is computed.

n = (0:19).’ ;
f1 = (0 : 0.05 : 0.95).’ ;
f2 = (0 : 0.001 : 0.999).’ ;
s = exp(j*0.317*2*pi*n).’ ;
stem( f1, abs(fft(s)), ’k’ ) ;
hold
plot( f2, abs(fft(s,1000)) ) ;

Note that the larger N , the denser the Fourier frequencies, and hence the closer ω0 is to a
Fourier frequency, and the narrower the peak will be.

12. In short, the frequency of a noiseless complex sinusoid can be determined with arbitrary
precision by zero-padding the signal and locating the maximum of the resulting amplitude
spectrum. The fact that the maximum is achieved very close to ω0 can be also shown theo-
retically by noting that

〈v(ω), s〉 =
L−1∑

n=0

ejω0ne−jωn =
L−1∑

n=0

ej(ω0−ω)n

is a geometric sum with common ratio z = ej(ω0−ω). By the usual formula,

〈v(ω), s〉 =
1− zL

1− z
=

1− ejL(ω0−ω)

1− ej(ω0−ω)

which, after factoring out zL/2 and z1/2 from the numerator and denominator (respectively),
reduces to

〈v(ω), s〉 = e−j(L−1)(ω−ω0)/2 · sin(L(ω − ω0)/2)
sin((ω − ω0)/2)

The complex factor in the expression above has unit modulus, therefore

|〈v(ω), s〉| =
∣∣∣∣
sin(L(ω − ω0)/2)
sin((ω − ω0)/2)

∣∣∣∣

A graph of this function of ω for L = 20 and ω0 = (0.317)(2π) was obtained in the previous
example. The maximum value of this function is L, and occurs at ω = ω0.
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LECTURE 18

Topics: periodic signals in continuous time; sums of harmonically related sinusoids; introduction
to Fourier series

Key Points:

• Most periodic signals in continuous time can be expressed as sums of Fourier sinusoids.

• For a fundamental period T0 and (correspondingly) fundamental frequency Ω0 = 2π/T0, the
kth complex Fourier sinusoid (where k ∈ Z) is given by

v(k)(t) = ejkΩ0t

The frequency kΩ0 is referred to as the kth harmonic (of Ω0).

• The complex Fourier series of period T0 with coefficients {Sk} is defined by

s(t) =
∞∑

k=−∞
Ske

jkΩ0t ,

provided the infinite sum converges. It is real-valued if and only if

(∀k ∈ Z) S−k = (Sk)∗

Theory and Examples:

1. We have seen that the DFT synthesis equation

s[n] =
1
L

L−1∑

k=0

S[k]ejk(2π/L)n , n = 0 : L− 1

can be extended outside the time index range n = 0 : L − 1 to produce an infinite periodic
sequence having period L. This also means that every discrete-time sequence that is periodic
with period L can be expressed as a sum of L Fourier sinusoids with coefficients given by the
(scaled) DFT of the segment of the sequence corresponding to time indices n = 0 : L− 1.

Not surprisingly, the L Fourier frequencies ωk = k(2π/L) (where k = 0 : L− 1) are the only
distinct values of ω in [0, 2π) such that x[n] = ejωn is periodic with period L.

2. Most periodic signals encountered in continuous time have a similar structure. In other
words, they can be written as a sum of continuous-time Fourier sinusoids, whose coefficients
are obtained by an operation that resembles the DFT.

3. Recall that a continuous-time signal {s(t), t ∈ R} is periodic with period T0 > 0 if

(∀t ∈ R) s(t + T0) = s(t)

If s(t) is periodic with period T0, it is also periodic with period mT0, where m is a positive
integer. The smallest value of T0 satisfying the above identity is the fundamental period of
the signal.

Associated with any period T0 are two familiar parameters: the cyclic frequency f0 = 1/T0

(in Hz) and the angular frequency (or simply frequency) Ω0 = 2π/T0 (in rad/sec).
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4. By analogy to discrete time, the continuous-time Fourier sinusoids corresponding to period
T0 are the signals

v(k)(t) = ejΩkt

where
Ωk = k · 2π

T0
= kΩ0 , (k ∈ Z)

They are the only complex sinusoids of the form ejΩt which are periodic with period T0, i.e.,
have a fundamental period which a submultiple of T0.

The fundamental frequency is Ω0, and the positive multiples 2Ω0, 3Ω0, . . . of Ω0 are known as
the harmonics of Ω0.

5. Example. Let f1 = 50.0 Hz and f2 = 87.5 Hz. Since the ratio f2/f1 is rational (= 7/4),
f1 and f2 are both harmonics of the same fundamental cyclic frequency f0 (another way of
saying this is that they are harmonically related). The largest such value of f0 is 12.5 Hz.
(Question: What other values can f0 take?)

6. Clearly, the Fourier frequencies {kΩ0, k ∈ Z} are a discrete, infinite set. Taking a linear
combination of Fourier sinusoids results in the periodic signal

s(t) =
∞∑

k=−∞
Ske

jkΩ0t (♠)

This is known as a Fourier series of period T0 with (complex-valued) coefficients {Sk, k ∈ Z}.
Depending on the values of the coefficients, the fundamental period of this signal may actually
be a submultiple of T0.

Question: Why is s(t) periodic with period T0? When is the fundamental period of s(t)
equal to T0/2?

Note that, unless only a finite number of Sk’s are nonzero, a Fourier series is an infinite sum
which may not converge.

7. Example. Based on the previous example, the signal

s(t) = 5.0 + 6.2 cos(25πt + 0.3) + 4.6 cos(100πt− 1.9) + 2.8 cos(175πt + 2.5)

is a Fourier series with fundamental period T0 = 1/(12.5) = 0.08 sec. We can rewrite it in
the complex form (♠) using the familiar formula

A cos(Ωt + φ) =
Aejφ

2
· ejΩt +

Ae−jφ

2
· e−jΩt

Thus the nonzero coefficients in (♠) are

S0 = 5.0
S1 = (S−1)∗ = 3.1ej0.3

S4 = (S−4)∗ = 2.3e−j1.9

S7 = (S−7)∗ = 1.4ej2.5
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This signal is an example of a finite, or bandlimited, Fourier series; this means that the number
of terms in the series is finite, and thus the frequencies present in s(t) are all contained in a
finite band (in this case, [0, 87.5] Hz on the positive frequency axis).

8. In MATLAB, the Fourier series s(t) of the previous example can be computed and plotted
for an arbitrary (finite) set values of t. For example,

To = 0.08; % fundamental period
N = 500; % samples per period
t = To*(0 : 1/N : 3-1/N).’; % three periods shown
s = 5.0 + 6.2*cos(25*pi*t+0.3) +...

4.6*cos(100*pi*t-1.9) + 2.8*cos(175*pi*t+2.5);
plot(t,s), grid, axis tight

An equivalent way of computing N uniformly spaced samples of s(t) per period uses the DFT:

C = zeros(500,1);
C(1) = 5.0;
C(2) = 6.2*exp(j*0.3);
C(5) = 4.6*exp(-j*1.9);
C(8) = 2.8*exp(j*2.5);
c = N*ifft(C); % N and t defined as above
c = real(c);
plot(t,[c;c;c]), grid, axis tight

The equivalence is due to the fact that, when N uniform samples of s(t) are taken per period,
each harmonic (sinusoidal) component of s(t) becomes a (discrete-time) Fourier sinusoid for
sample size N . Your task: Explore this further (in a homework assignment).

9. We now turn to an example of an infinite Fourier series, given in real form:

s(t) =
∞∑

k=1

2(−1)k+1

πk
· sin(kΩ0t) (♥)

In this case, S0 = 0, while for k 6= 0,

Sk = j · (−1)k

πk

As we expect, S−k = (Sk)∗ since s(t) is real-valued.

10. The following iteration computes successive approximations to s(t) using a finite sum (
∑K
−K ,

with K increasing):

To = 0.08; N = 500;
t = To*(-1 : 1/N : 1-1/N).’; % two periods shown
s = 0*t;
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for K = 1:100
s = s + (2/pi)*(-1).^(K+1)*sin(2*pi*K*t/To)/K;
plot(t,s), title([’K = ’ num2str(K)])
pause

end

11. It thus appears that as K increases, the finite sum (consisting of 2K complex sinusoids or,
equivalently, K real sinusoids) approximates the “sawtooth” waveform shown below. The
approximation is not uniformly good; pronounced ripples and overshoot are observed near
the points of discontinuity.

     -T0            -T0/2                0            T0/2            T0        t

s(t)

1

-1

It can be shown mathematically that as K → ∞, the finite sum computed above converges
at each t (except at points of discontinuity) to the ordinate obtained from the graph above.
In other words, the infinite Fourier series (♥) is exactly equal the function shown above, with
a minor adjustment at points of discontinuity:

s(t) =
{

2t/T0, −T0/2 < t < T0/2;
0, t = T0/2.

This formula is periodically extended outside (−T0/2 , T0/2].

12. As it turns out, most periodic signals in continuous time can be expressed (or “expanded”)
as a Fourier series, i.e., they are a linear combination of harmonically related sinusoids. The
infinite sum (♠) is the synthesis equation for this representation. The analysis equation,
whereby the coefficients {Sk} are obtained from the time-domain form of the signal s(t), will
be developed in the following lecture. Not surprisingly (i.e., by analogy to the DFT), the
analysis equation involves an inner product in the time domain. But since the time domain
is continuous, that inner product cannot be sum; it has to be an integral.
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LECTURE 19

Topics: orthogonality of Fourier sinusoids; determination of Fourier series coefficients

Key Points:

• The inner product of two continuous-time periodic signals f(t) and g(t) with common period
T0 is defined by

〈f ,g〉 =
1
T0

∫ T0

0
f∗(t)g(t)dt

• The Fourier sinusoids v(k)(t) = ejkΩ0t, where k ∈ Z, are pairwise orthogonal and have unit
norm:

〈v(k),v(`)〉 =
{

1, k = `;
0, k 6= `.

• The coefficients of the Fourier series

s(t) =
∞∑

k=−∞
Ske

jkΩ0t

can be obtained from

Sk = 〈v(k), s〉 =
1
T0

∫ T0

0
s(t)e−jkΩ0tdt

Theory and Examples:

1. Most “nice” periodic signals in continuous time have a Fourier series expansion, i.e., they can
be expressed as

s(t) =
∞∑

k=−∞
Ske

jkΩ0t (♠)

where Ω0 is the fundamental frequency. The proof of this fact—including important details
such as the class of signals for which this representation holds and the manner in which the
infinite sum converges—is beyond the scope of this course.

A more accessible, and also practical, question is the following: given a signal s(t) which has
the Fourier series representation shown above, how can we obtain the coefficients {Sk}? Put
differently, if (♠) is the synthesis equation which constructs the signal s(t) as a sum of Fourier
sinusoids with coefficients {Sk}, what analysis equation produces each Sk from s(t)? As we
will soon see, the answer involves the inner product of the kth Fourier sinusoid and the signal
s(t).

2. Let f(t) and g(t) be complex-valued signals which are both periodic with period T0. Their
inner product 〈f ,g〉 is defined as

〈f ,g〉 def=
1
T0

∫ T0

0
f∗(t)g(t)dt

We use boldface symbols to emphasize that, as was the case with vectors earlier, the inner
product involves entire segments of the signals f(t) and g(t) (over an interval of length T0).
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3. The familiar properties

〈g, f〉 = 〈f ,g〉∗
〈f , zg〉 = z〈f ,g〉 (z ∈ C)

〈f + g ,h〉 = 〈f ,h〉+ 〈g,h〉

also hold in this case. We should further note that:

• The definition of 〈f ,g〉 assumes that f(t) and g(t) are harmonically related, but the two
signals need not have the same fundamental period. Thus T0 can be any integer multiple
of the fundamental period (of each signal); and clearly the same value is obtained for
〈f ,g〉 if mT0 is used instead of T0 (for m ∈ N).

• The integral in the definition of 〈f ,g〉 can be taken over any interval of length T0, since
for any time offset T ,

∫ T+T0

T
f∗(t)g(t)dt =

∫ T0

0
f∗(t)g(t)dt

This equality is based on the fact that f∗(t)g(t) is also periodic with period T0. (Your
task: show this equality either graphically, or by differentiating the integral on the left
with respect to T .)

4. As it turns out, the Fourier sinusoids with frequencies kΩ0, where k ∈ Z, are mutually
orthogonal and have unit norm: if

v(k)(t) = ejkΩ0t and v(`)(t) = ej`Ω0t ,

then

〈v(k),v(`)〉 =
{

1, k = `;
0, k 6= `.

Note that a similar relationship was obtained for discrete-time Fourier sinusoids, with the
vector length N replacing 1.

5. To prove this relationship, we write

〈v(k),v(`)〉 =
1
T0

∫ T0

0
e−jkΩ0tej`Ω0tdt =

1
T0

∫ T0

0
ej(`−k)Ω0tdt

If k = `, then ej(`−k)Ω0t = 1 for all t, and thus

〈v(k),v(`)〉 =
1
T0

∫ T0

0
dt = 1

If k 6= `, then

〈v(k),v(`)〉 =
1
T0

∫ T0

0
cos((`− k)Ω0t) dt +

j

T0

∫ T0

0
sin((`− k)Ω0t) dt ,
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+

−

where both sinusoids under the integral signs have common period T0/|` − k|. The integral
of any real sinusoid of nonzero frequency over an entire period equals zero (see figure above).
Since the interval [0, T0) consists of exactly |`−k| periods of cos((`−k)Ω0t) and sin((`−k)Ω0t),
it follows that

〈v(k),v(`)〉 = 0 + j · 0 = 0

6. The synthesis equation (♠) is therefore a representation of s(t) as a linear combination of
orthogonal sinusoids. As was the case with vectors and the DFT, the coefficients {Sk} can
be obtained by projection onto each of the orthogonal components. Using boldface letters to
indicate entire signals, we can rewrite (♠) as

s =
∞∑

`=−∞
S` v(`)

Taking inner products of both sides with v(k), we obtain

〈v(k), s〉 =
∞∑

`=−∞
S` 〈v(k),v(`)〉

= Sk

The sought analysis equation is therefore Sk = 〈v(k), s〉, i.e.,

Sk =
1
T0

∫ T0

0
s(t)e−jkΩ0tdt (♣)

As noted before, the range of integration can be any interval of length T0.

7. Example. Let s(t) be a rectangular pulse train with duty factor α ∈ (0, 1) and height 1, as
shown below.

      -T0                     -αT0/2     αT0/2                       T0     t

s(t)
1

We first evaluate S0, also known as the mean value (or DC offset) of s(t):

S0 =
1
T0

∫ T0

0
s(t)dt =

αT0

T0
= α
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For k 6= 0, we have (using (−T0/2, T0/2] instead of [0, T0) in (♣))

Sk =
1
T0

∫ T0/2

−T0/2
s(t)e−jkΩ0tdt

=
1
T0

∫ αT0/2

−αT0/2

{
cos(kΩ0t)− j sin(kΩ0t)

}
dt

=
1

kΩ0T0

[
sin(kΩ0t) + j cos(kΩ0t)

]αT0/2

t=−αT0/2

Since sin(−θ) = − sin θ and cos θ = cos(−θ), we obtain

Sk =
2 sin(kαΩ0T0/2)

kΩ0T0

=
sin(kαπ)

kπ

The graphs of s(t) and Sk are shown below in two cases, α = 1/2 and α = 1/4.

−1 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 1
−0.25

0

0.25

0.5

0.75

1

1.25
s(t) for α = 1/2

t/T0

−10 −5 0 5 10

0

0.2

0.4

0.6

S
k
 for α = 1/2

k = Ω/Ω0

−1 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 1
−0.25

0

0.25

0.5

0.75

1

1.25
s(t) for α = 1/4

t/T0

−10 −5 0 5 10

0

0.2

0.4

0.6

S
k
 for α = 1/4 

k = Ω/Ω0

8. A few remarks on the rectangular pulse train of the previous example:

• The signal is real-valued and symmetric (also known as even) about t = 0: s(−t) = s(t).
Accordingly, its Fourier series coefficients {Sk} are also real-valued and symmetric:

S−k =
sin(−kαπ)
−kπ

=
sin(kαπ)

kπ
= Sk

Combining the kth and (−k)th complex sinusoids into a cosine, we obtain the alternative,
cosine-only real series

s(t) = α + 2
∞∑

k=1

sin(kαπ)
kπ

· cos(kΩ0t)
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• The formula for Sk yields the correct answer for S0 (namely α) in the limit as k (treated
as a continuous variable) tends to 0. This is because sin θ/θ → 1 as θ → 0.

Questions:

– In the case α = 1/2, Sk has a simple “non-trigonometric” form. What is it?
– If s(t) is scaled so that each pulse has area equal to T0 (instead of αT0), the modified

coefficients Sk can be obtained by sampling a single function of θ which does not
involve α. What is that function, and how is the sampling done?

9. The finite Fourier series approximation (
∑K
−K , with K increasing) to the rectangular pulse

train in the case α = 1/4 can be illustrated graphically as follows:

To = 0.08; N = 500;
t = To*(-1 : 1/N : 1-1/N).’; % two periods shown
s = 0*t+1/4;
for K = 1:100

s = s + 2*sin(K*pi/4)*cos(2*pi*K*t/To)/(K*pi);
plot(t,s), title([’K = ’ num2str(K)])
pause

end

As was the case earlier with the sawtooth waveform, the finite sum approximation contains
ripples which are prominent near the points of discontinuity. The same effect would be
observed if s(t) were processed by an ideal lowpass filter with cutoff frequency between Kf0

and (K + 1)f0 (Hz).

10. Example. Consider the piecewise constant periodic waveform x(t) (of period T0 = 6) shown
below.

       -8  -7        -5  -4        -2  -1   0   1    2         4   5         7   8    t

x(t)

5

3
2... ...

By linearity, the Fourier series expansion of x(t) has coefficients

X0 = 2 +
2
3

+ 2 · 1
3

=
10
3

and, for k 6= 0,

Xk =
sin(2kπ/3)

kπ
+

2 sin(kπ/3)
kπ

Your task: Derive these formulas by expressing x(t) as a sum of two rectangular pulse trains
plus a constant.
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LECTURE 20

Topics: further analogies between Fourier series and the DFT

Key Points:

• Circular operations (reversal and shifts) on a finite vector are equivalent to non-circular
operations on the infinite periodic extension of that vector.

Time Domain Signal Fourier Series Coefficients
x(t) Xk

x∗(t) X∗
−k

x(−t) X−k

x(t− T ) e−jkΩ0T Xk

(K ∈ Z) x(t)ejKΩ0t Xk−K

(β > 0) x(βt) Xk

Theory and Examples:

1. The Fourier series and the discrete Fourier transform are parallel concepts. They both provide
a decomposition of a periodic signal into mutually orthogonal, harmonically related sinusoids.
The coefficients of these sinusoids collectively form the spectrum of the periodic signal.

We have already seen many similarities between the two concepts, notably in the way the
spectrum is obtained from the time-domain signal (i.e., by means of an inner product). The
two concepts also exhibit similar properties in regard to signal transformations and time-
frequency duality.

2. In this lecture we will explore some of these similarities, but also point out some important
differences, between the Fourier series and the DFT. Most notably:

• In the case of the DFT, the two domains—time and frequency—have a common struc-
ture, i.e., they are index sets of the same finite size. Periodicity is an optional feature:
thus the DFT applies to both a finite-dimensional time-domain vector and its infinite
periodic extension; while the set of Fourier frequencies has a counterpart in every interval
of the form [2rπ, 2(r + 1)π), where r ∈ Z.

• In the case of the Fourier series, the two domains are very different. The time domain
is continuous and inherently periodic. (Like the DFT, the Fourier series describes both
a signal over a finite interval of time and its infinite periodic extension outside that
interval.) On the other hand, the frequency domain is discrete, infinite (indexed by Z)
and distinctly non-periodic: we recall that, unlike discrete-time sinusoids, continuous-
time sinusoids can have arbitrarily high frequencies. As a result of these differences,
duality between time and frequency does not manifest itself as plainly as in the case of
the DFT.
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3. In the case of vectors, periodic extension of the time domain makes it possible to implement
certain circular time index permutations defined on {0, . . . , L − 1} in terms of equivalent
non-circular operations performed on Z.

Specifically, we consider the circular right m-shift Pm and the circular reversal R performed
on a signal vector s of size L. As the figure below illustrates, these permutations can be
carried out by

• periodically extending s from indices {0, . . . , L− 1} to all indices in Z;

• performing either a regular (i.e., non-circular) right shift or a regular reversal on the
periodic sequence; and

• restricting the resulting sequence to indices {0, . . . , L− 1}.

P4s

0

s

Rs

4. In the case of a continuous-time signal s(t), the time shift t → t − T (where T is fixed) and
the time reversal t → −t are both regular (non-circular) operations. If s(t) is periodic with
period T0, these operations result in a circular shift and a circular reversal (respectively) of
the first period {s(t), 0 ≤ t < T0}.

5. The Fourier series properties given below are analogous to familiar DFT properties. A good
intuition about the DFT generally suffices to state these properties correctly (i.e., as educated
guesses). Formal proofs are also straightforward using either the synthesis (sum) or analysis
(integral) equations:

s(t) =
∞∑

k=−∞
Ske

jkΩ0t ⇔ Sk =
1
T0

∫ T0

0
s(t)e−jkΩ0tdt

6. The first group of properties is analogous to DFT 2-4, and pertains to complex conjugates
and index reversals:

y(t) = x∗(t) ⇒ Yk = X∗
−k (1)
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x(t) = x∗(t) ⇒ Xk = X∗
−k (2)

y(t) = x(−t) ⇒ Yk = X−k (3)

Note that both time and frequency reversals are non-circular (i.e., t → −t and k → −k).

Property (2), which follows directly from (1), is the familiar fact that a real-valued signal has
a conjugate symmetric spectrum.

7. Example. Consider the three signals s(t), x(t) and y(t) shown below. We would like to
express the Fourier series coefficients of x(t) and y(t) in terms of those of s(t) (assumed
known).

      -T0                                 0                                  T0                t

s(t)

2

      -T0                                 0                                  T0                t

x(t)

2

       -T0                                                                     T0                t

y(t)

1

-1

1

First, we note that

(∀t) x(t) =
s(t) + s(−t)

2
and y(t) =

s(t)− s(−t)
2

Also,
(∀t) x(t) = x(−t) and y(t) = −y(t)

The signals x(t) and y(t) are respectively known as the even and odd parts of s(t), and their
sum equals s(t).

From (1), it follows that

(∀k) Xk =
Sk + S−k

2
and Yk =

Sk − S−k

2

These expressions can be further simplified. Since s(t) is real-valued, it follows from (2) that
S−k = S∗k , and thus

(∀k) Xk = <e{Sk} = <e{S−k} = X−k

and
Yk = j=m{Sk} = −j=m{S−k} = −Y−k

Note that Xk is real and even (i.e., symmetric) about k = 0. This is to be expected since
x(t) is also real and even about t = 0.
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8. The counterpart of DFT 5 (i.e., Pms ←→ F−mS) is the time shift, or time delay, property

y(t) = x(t− T ) ⇒ Yk = e−jkΩ0T Xk (4)

In the frequency domain, the spectrum is multiplied by a complex sinusoid in k, i.e., its phase
is shifted by a linear function of k. The same effect was seen in DFT 5.

9. Example. The Fourier series coefficients of rectangular pulse train were derived in the
previous lecture. Using that result and (4), we obtain, for the signal below,

Xk = (e−jkπ/6 − ejkπ/6) · sin(kπ/6)
kπ

= −j · 2
kπ

sin2

(
kπ

6

)

As expected, X−k = X∗
k . The fact that Xk is purely imaginary (and thus also equal to −X−k)

is due to the odd symmetry in x(t), i.e., x(−t) = −x(t).

                           -T0/6          T0/6                                    t

x(t)
1

     -T0                               0                             T0                     

-1

Your Task: Show the missing details in the derivation of Xk.

10. The counterpart of DFT 6 (i.e., Fms ←→ PmS) is the modulation, or frequency shift,
property

y(t) = x(t)ejKΩ0t ⇒ Yk = Xk−K (5)

The time-domain signal is multiplied by the Kth Fourier sinusoid. Correspondingly, the
spectrum undergoes a right shift by K indices.

11. Example. A half-wave rectified sinusoid (such as the one shown below) can be obtained
by multiplying a full-wave sinusoid by a half-duty (α = 1/2) rectangular pulse train. Your
task: Using dotted lines, sketch the full-wave sinusoid and the half-duty pulse train on top
of x(t).

-T0                    -T0/4   0      T0/4                       T0            t

x(t)
1
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If s(t) is the symmetric rectangular half-duty pulse train of unit height and Ω0 = 2π/T0, then

x(t) = s(t) cos(Ω0t) = s(t) · ejΩ0t + e−jΩ0t

2

Therefore

Xk =
Sk−1 + Sk+1

2

=
sin((k − 1)π/2)

2(k − 1)π
+

sin((k + 1)π/2)
2(k + 1)π

Noting that all nonzero sin( · ) values above equal ±1, and recalling that the value of sin θ/θ
can be taken as 1 at θ = 0, we obtain the simplified form

Xk =





1/4 , k = −1, 1
(−1)k/2

π(1− k2)
, k even (including 0)

0 , all other k

Your task: Determine the Fourier series coefficients Yk of the full-wave rectified sinusoid
y(t) below in terms of the Xk’s. The period of y(t) is half of that of x(t), and accordingly,
the Yk’s are expressed in terms of X2k’s.

   -T0/4    0      T0/4                                     t

y(t)
1

... ...

12. Point-by-point multiplication of two signals has the same meaning, regardless of whether the
signals are vectors, sequences or continuous-time waveforms. In the context of the DFT (i.e.,
where vectors are involved), the dual property is circular convolution. This duality is also
seen in the Fourier series provided convolution is properly defined.

• Convolution of two periodic signals x(t) and y(t) of common period T0. As in the case
of the DFT, this is defined in a circular (or periodic) fashion using an unconjugated
dot product between either signal and a reversed/shifted version of the other. The dot
product is an integral, and the resulting continuous-time signal is

(∀t) s(t) =
1
T0

∫ T0

0
x(τ)y(t− τ)dτ

As with DFT 9, convolution in the time domain is equivalent to point-by-point multi-
plication in the frequency domain:

(∀k) Sk = XkYk
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• Convolution of two infinite sequences {Xk, k ∈ Z} and {Yk, k ∈ Z}. The result is the
sequence {Sk, k ∈ Z} given by the infinite sum

Sk =
∞∑

`=−∞
X`Yk−`

(Note that this operation cannot be circular or periodic, since Z has no inherent peri-
odicity.) As with DFT 8, the time-domain equivalent is point-by-point multiplication:

(∀t) s(t) = x(t)y(t)

13. You may have noted in the examples given so far that the final expression for the Fourier series
coefficients does not contain the period T0. This is a general fact: time dilation or compression
(i.e., stretching or shrinking a signal horizontally) by means of the transformation t → βt
(where β > 0) has no effect on the Fourier series coefficients. Indeed,

x(t) =
∞∑

k=−∞
Xke

jkΩ0t ⇒ x(βt) =
∞∑

k=−∞
Xke

jk(βΩ0)t

and therefore
y(t) = x(βt) ⇒ Yk = Xk (6)

This is known as the time scaling property of the Fourier series, and has no direct counterpart
in the DFT.
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LECTURE 21

Topics: introduction to linear time-invariant filters; response to FIR filters to sinusoidal and
exponential inputs; frequency response and system function

Textbook References: sections 4.2.2, 4.3, 4.4.1, 4.4.3

Key Points:

• The input-output relationship

y[n] = b0x[n] + b1x[n− 1] + · · ·+ bMx[n−M ] , n ∈ Z ,

describes a linear time-invariant system known as a finite impulse response (FIR) filter.

• If the input x[ · ] to a FIR filter is the complex exponential sequence x[n] = zn (where z ∈ C),
the output y[ · ] is given by y[n] = H(z)zn, where

H(z) = b0 + b1z
−1 + · · ·+ bMz−M

is the filter’s system function. In particular, when x[n] = ejωn, the output is given y[n] =
H(ejω)ejωn, where

H(ejω) = b0 + b1e
−jω + · · ·+ bMe−jωM

is the filter’s frequency response.

• If all coefficients bk are real-valued, then the amplitude response |H(ejω)| is symmetric (even)
about ω = 0 and π, while the phase response ∠H(ejω) is antisymmetric (odd) about the same
frequencies.

• The frequency response of an FIR filter with coefficient vector b = b0:M can be obtained
for N ≥ M + 1 uniformly spaced frequencies in [0, 2π) by zero-padding b to length N and
computing a DFT.

Theory and Examples:

1. In developing the DFT, we considered discrete-time signals which are either vectors (i.e.,
consisted of finitely many samples) or periodic extensions thereof. We now turn our attention
to general discrete-time signals, namely sequences such as

x = x[ · ] = {x[n], n ∈ Z}
If x is a linear combination of (not necessarily periodic) sinusoids, then it also has a spectrum.
Its spectrum consists of the coefficients of these sinusoids given (or plotted) as a function of
frequency.

2. Linear filters can be used to alter the spectra of sequences in an immediate, “real time”,
fashion. A linear filter H acts as a (linear) transformation of an input sequence x to an
output sequence y. (Since the input and output spaces are infinite-dimensional, this linear
transformation is not represented by a finite-dimensional matrix.)

y = H(x)
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x yLinear Filter
H

3. Analytically, the simplest discrete-time filter is the so-called finite impulse response (FIR)
filter. At each sampling instant n, a new input sample is read in and stored in a buffer
containing the M + 1 most recent input samples, i.e., x[n − M : n]. These samples are
linearly combined using a fixed vector b of coefficients to produce an output sample y[n].
This procedure is described by a single formula:

y[n] = b0x[n] + b1x[n− 1] + · · ·+ bMx[n−M ] , n ∈ Z ,

known as the filter input-output relationship.

4. An FIR filter has two notable properties:

• Linearity. If three identical filters are used on input sequences x(1), x(2) and x(3) =
c1x(1) + c2x(2), then the output sequence of the third filter is the same (in terms of
coefficients) linear combination of the output sequences of the first two filters, i.e., y(3) =
c1y(1) + c2y(2).

• Time invariance. If two identical filters are used on two input sequences which are
time-delayed versions of each other, then the observed output sequences will also be
time-delayed versions of each other (with the same delay).

Your Task: Prove these properties formally.

5. An FIR filter modifies the spectrum of an input sequence x, i.e, it changes the amounts
(coefficients) of the sinusoidal components of x. To illustrate this point, we take a single
complex sinusoid of frequency ω:

x[n] = ejωn , n ∈ Z

and put it through a filter with coefficient vector b = [1 2 2 1]T . The output sequence y is
given by

y[n] = x[n] + 2x[n− 1] + 2x[n− 2] + x[n− 3]
= ejωn + 2ejω(n−1) + 2ejω(n−2) + ejω(n−3)

= (1 + 2e−jω + 2e−j2ω + e−j3ω) · ejωn

= (1 + 2e−jω + 2e−j2ω + e−j3ω) · x[n]

Thus the output is a complex sinusoid of the same frequency; the filter merely scales the
input by a complex factor which depends on the frequency ω. This is true for any FIR filter.

6. The scaling factor above is known as the frequency response of the filter and is denoted by
H(ejω):

H(ejω) = 1 + 2e−jω + 2e−j2ω + e−j3ω
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It is a polynomial in (negative) powers of ejω. The expression for H(ejω) can be simplified
by noting the (non-circular) symmetry of the coefficient vector

b = b0:3 =
[

1 2 2 1
]T

about the “middle” index 3/2. Factoring out e−j3ω/2, we obtain

H(ejω) = e−j3ω/2 · (ej3ω/2 + 2ejω/2 + 2e−jω/2 + e−j3ω/2)
= e−j3ω/2 · (4 cos(ω/2) + 2 cos(3ω/2))

7. The modulus |H(ejω)| of the frequency response is known as the amplitude, or magnitude,
response of the filter. In this case, noting that |ejθ| = 1, we have

|H(ejω)| = |4 cos(ω/2) + 2 cos(3ω/2)|
This function of ω is symmetric about ω = π and has three zeros in the interval [0, 2π): at
ω = 2π/3, π and 4π/3. Thus for any of the three input sequences

x(1)[n] = ej2πn/3 , x(2)[n] = (−1)n and x(3)[n] = ej4πn/3 , n ∈ Z,

the filter output equals 0 for all n. By linearity, the same is true about any linear combination
of these three input sequences; in particular, the sequence x[n] = cos(2πn/3+φ0). (Question:
Why?)

8. The angle ∠H(ejω) of the frequency response is known as the phase response of the filter. In
this case, recalling that ∠z1z2 = ∠z1 + ∠z2, we have

∠H(ejω) = −3ω

2
+ ∠ (4 cos(ω/2) + 2 cos(3ω/2))

The first term is linear in ω, while the second equals 0 or ±π, depending on whether the
real number 4 cos(ω/2) + 2 cos(3ω/2) is positive or negative. This means that ∠H(ejω) is
piecewise linear with constant slope (=−3/2) and discontinuities of size π occurring wherever
4 cos(ω/2) + 2 cos(3ω/2) changes sign, i.e., at ω = 2π/3, ω = π and ω = 4π/3.

Note: The phase response ∠H(ejω) is piecewise linear for all FIR filters whose coefficients
have even or odd symmetry about the middle index (M/2).

9. The expression for the frequency response H(ejω) is always periodic with period (in ω) equal
to 2π; as a result, H(ejω) is (automatically) periodically extended outside the interval [0, 2π).

The amplitude response |H(ejω)| is symmetric (even) about ω = 0 and π, while the phase
response ∠H(ejω) is antisymmetric (odd) about the same frequencies. This is true for all FIR
filters with real-valued coefficients b0, . . . , bM , since

H(ejω) = b0 + b1e
−jω + · · ·+ bMe−jωM

and
H(e−jω) = H(ej(2π−ω)) = b0 + b1e

jω + · · ·+ bMejωM = H∗(ejω)

(Recall that |z∗| = |z| and ∠z∗ = −∠z.)
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10. Plotting |H(ejω)| and ∠H(ejω) requires computing H(ejω) at a sufficiently dense set of fre-
quencies ω in [0, 2π), i.e.,

ω = 0,
2π

N
,

4π

N
, . . . , 1− 2π

N
, where N À M

These are the Fourier frequencies for a vector of length N . Provided N ≥ M +1, the resulting
vector of values of H(ejω) equals the DFT of

[b ; 0N−M−1]

11. Example. The following MATLAB script computes the amplitude and phase responses of
the FIR filter with input-output relationship

y[n] = x[n] + 2x[n− 1] + 2x[n− 2] + x[n− 3]

at N = 512 uniformly spaced frequencies in [0, 2π).

b = [1 2 2 1].’ ;
H = fft(b,512) ;
A = abs(H) ; % amplitude response
q = angle(H) ; % phase response
w = (0: 1/512 : 1-1/512).’*(2*pi) ;
plot(w,A) ;
plot(w,q) ;

12. Similar conclusions can be drawn when the input signal is a complex exponential, i.e.,

x[n] = zn , n ∈ Z

where z is an arbitrary complex number. Using the same filter as previously, we have, for all
n,

y[n] = zn + 2zn−1 + 2zn−2 + zn−3

= (1 + 2z−1 + 2z−2 + z−3) · zn

= (1 + 2z−1 + 2z−2 + z−3) · x[n]
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The complex scaling factor

H(z) = 1 + 2z−1 + 2z−2 + z−3

is known as the system function of the filter. The frequency response H(ejω) of an FIR filter
is the restriction of its system function to the unit circle z = ejω.

13. Example. Verify the following input-pairs for the FIR filter considered above (all relation-
ships hold for all n).

x[n] = 3n ⇒ y[n] =
52
27
· 3n

x[n] = (−3)n ⇒ y[n] =
14
27
· (−3)n

x[n] =
(

1
3

)n

⇒ y[n] = 52
(

1
3

)n
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LECTURE 22

Topics: response of FIR filters to exponential inputs (continued); response of FIR filters to periodic
inputs; cascaded filters

Textbook References: sections 4.4.2, 4.4.4, 4.4.5

Key Points:

• For an FIR filter with frequency response H(ejω),

x[n] = rn cos(ω0n + φ) ⇒ y[n] =
∣∣H(rejω0)

∣∣ rn cos
(
ω0n + φ + ∠H(rejω0)

)

• The response of an FIR filter to a periodic input can be computed by a circular convolution
in the time domain, or, equivalently, by taking an element-wise product of DFT’s in the
frequency domain. Either technique can be used to generate an integer number of periods of
the output signal.

• If two filters with system functions H1(z) and H2(z) are connected in series (cascade), the
resulting filter has system function

H(z) = H1(z)H2(z) ,

regardless of the order of the connection.

Theory and Examples:

1. We have seen that if x[n] = zn is the input to an FIR filter with coefficients b0, . . . , bM , then
the output y[ · ] is given by y[n] = H(z)zn, where

H(z) = b0 + b1z
−1 + · · ·+ bMz−M

is the filter’s system function.

2. If the input is the real-valued sinusoid

x[n] = cos(ω0n + φ) =
1
2
· ejφejω0n +

1
2
· e−jφe−jω0n ,

then, by linearity, the output is given by

y[n] =
1
2
·H(ejω0)ejφejω0n +

1
2
·H(e−jω0)e−jφe−jω0n

Since H(e−jω) = H∗(ejω), the expression above equals the sum of two complex conjugate
terms, which is the same as twice the real part of either term:

y[n] = <e
{

H(ejω0)ej(ω0n+φ)
}

Writing H(ejω0) in complex exponential form, i.e., H(ejω) =
∣∣H(ejω)

∣∣ ej∠H(ejω), we obtain

y[n] =
∣∣H(ejω0)

∣∣ cos
(
ω0n + φ + ∠H(ejω0)

)
(n ∈ Z)
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The same approach can be applied to the oscillating exponential input

x[n] = rn cos(ω0n + φ) =
ejφ

2
· rnejω0n +

e−jφ

2
· rne−jω0n

Taking z = re±jω0 , we obtain in this case

y[n] =
∣∣H(rejω0)

∣∣ rn cos
(
ω0n + φ + ∠H(rejω0)

)
(n ∈ Z)

3. Example. Let
x[n] = 2−n · cos

(πn

3
+

π

4

)
, n ∈ Z

and (as before)
y[n] = x[n] + 2x[n− 1] + 2x[n− 2] + x[n− 3]

Setting z = (ejπ/3)/2, we obtain

H(z) = 1 + 4e−j(π/3) + 8e−j(2π/3) + 8e−jπ = 13.748 · e−j2.285

The output sequence is therefore given by

y[n] = 13.748 · 2−n · cos
(πn

3
− 1.499

)
, n ∈ Z

Your task: Repeat for x[n] = cos(πn/3 + π/4).

4. Periodic sequences are always expressible as sums of sinusoids. We have seen that if x[ · ] is
periodic with period L, then it can be written as

x[n] =
1
L

L−1∑

k=0

X [k]ejk(2π/L)n , n ∈ Z

where X [0 : L−1] is the DFT of its first period x[0 : L−1]. Thus x[ · ] is a linear combination
of L (or fewer) complex sinusoids, whose frequencies are multiples of 2π/L. Qualitatively, a
graph of its (magnitude) spectrum would look like this:

0                                 ω               2π
2π/L

5. Example. Suppose

x[n] = A1 cos(2πf1n + φ1) + A2 cos(2πf2n + φ2) + A3 cos(2πf3n + φ3) ,

where the Ai’s are real and nonzero, and

f1 =
1
8

, f2 =
3
20

and f3 =
5
12
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Each fi is rational, therefore each sinusoid is periodic. Their sum x[ · ] is also periodic, and its
period is the smallest value of L for which all three frequencies are multiples of 1/L. Thus L
equals the least common multiple of 8, 20 and 12, namely L = 120. Obviously, the spectrum
of x[ · ] has only six (out of 120 possible) lines in [0, 2π).

Note: In discrete time, the sum of two or more periodic signals is always periodic. This is
not true in continuous time.

6. If the periodic signal x[ · ] from above is the input to an FIR filter with frequency response
H(ejω), then, by linearity, the filter output is given by

y[n] =
1
L

L−1∑

k=0

H(ejk(2π/L))X [k]ejk(2π/L)n , n ∈ Z

Thus the output sequence y[ · ] is also periodic with period L, and its first period y[0 : L− 1]
has DFT Y[0 : L− 1] given by

Y[k] = H(ejk(2π/L))X [k] , k = 0 : L− 1 (♠)

7. As we saw earlier, H(ejω) =
∑M

n=0 bne−jωn can be computed for any set of M + 1 or more
uniformly spaced frequencies by zero-padding the vector b and computing a DFT. Thus (♠)
suggests a way of computing the response of an FIR filter to a periodic input of period L (where
L ≥ M + 1) using a frequency domain-based tool, namely the element-wise multiplication of
two DFT’s.

8. Example. Consider the filter with input-output relationship

y[n] = x[n]− 4x[n− 1] + x[n− 2]

Suppose that the input x[ · ] is periodic with period L = 4, such that

x[0 : 3] =
[

2 1 −3 5
]T

The MATLAB script below computes the first period y[0 : 3] of the output.

x = [2 1 -3 5].’ ;
X = fft(x) ;
b = [1 -4 1].’ ;
H = fft(b,4) ;
Y = H.*X ;
y = ifft(Y) ;

9. Since element-wise multiplication of DFT’s is equivalent to circular convolution in the time
domain, (♠) suggests that the response of an FIR filter to a periodic input can be computed
using a circular convolution in the time domain. This is not surprising : by rewriting the
input-equation y[n] = x[n]− 4x[n− 1] + x[n− 2] in the previous example as

y[n] = x[n]− 4x[n− 1] + x[n− 2] + 0 · x[n− 3] ,
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we obtain 


y[0]
y[1]
y[2]
y[3]


 =




2 5 −3 1
1 2 5 −3

−3 1 2 5
5 −3 1 2







1
−4

1
0




This is the circular convolution of x[0 : 3] and [b; 0], which is precisely what the MATLAB
script (above) computes.

10. Question: How would the computations in the last two items change if the same input
sequence x[ · ] were processed instead by an FIR filter with M + 1 = 7 coefficients?

11. If two FIR filters are connected in series, or in a cascade (as shown below), the resulting
system function is given by the product of the two system functions, i.e.,

H(z) = H1(z)H2(z)

x = x H y   = yy   = x H
(1) (2)(1) (2)

1 2

H

(Note that the order in which the two filters are connected is immaterial.) This is proved by
using x[n] = zn as the input to the cascade. The output of the first filter is

y(1)[n] = H1(z)zn , (n ∈ Z)

and, by linearity, the output of the second filter (same as the output of the cascade) is

y(2)[n] = y[n] = H1(z)H2(z)zn = H2(z)H1(z)zn (n ∈ Z)

12. Example. Two FIR filters with coefficient vectors

b(1) =
[

1 2 2 1
]T

b(2) =
[

1 −4 1
]T

are connected in cascade. The resulting filter has system function

H(z) = (1 + 2z−1 + 2z−2 + z−3)(1− 4z−1 + z−2)
= 1− 2z−1 − 5z−2 − 5z−3 − 2z−4 + z−5

and is therefore an FIR filter with coefficient vector

b =
[

1 −2 −5 −5 −2 1
]T

and input-output relationship

y[n] = x[n]− 2x[n− 1]− 5x[n− 2]− 5x[n− 3]− 2x[n− 4] + x[n− 5]
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LECTURE 23

Topics: linear convolution of sequences and vectors; linear convolution as circular convolution;
block convolution

Textbook References: sections 4.6, 4.7.1, 4.7.2 and 4.7.4

Key Points:

• The input x = x[ · ] and output y = y[ · ] of a linear time-invariant system are related by the
convolution sum

y[n] =
∞∑

k=−∞
h[k]x[n− k] def= (h ∗ x)[n]

The sequence h = h[ · ] is the system’s response to a unit impulse δ = δ[ · ].
• If h and x are finite-duration sequences with activity intervals 0 : K − 1 and 0 : L − 1

respectively, then y = h∗x is also a finite-duration sequence with activity interval 0 : K+L−2.
This serves as an implicit definition for the linear convolution of two vectors:

y[0 : K + L− 2] = h[0 : K − 1] ∗ x[0 : L− 1]

• If b = b[0 : K − 1] and s = s[0 : L− 1], then

b ∗ s = [b ; 0L−1] ~ [s ; 0K−1]

Thus linear convolution of vectors can be implemented by means of circular convolution—and
thus optionally, DFT’s.

• If s(1) and s(2) have lengths L1 and L2, respectively, then

b ∗ [s(1) ; s(2)] = [b ∗ s(1) ; 0L2 ] + [0L1 ; b ∗ s(2)]

Theory and Examples:

1. In the preceding lectures, we examined in detail the response of an FIR filter to two types
of inputs: infinite-duration (two-sided) exponentials and periodic sequences. We will now
broaden our scope to arbitrary input sequences x[ · ], and discuss the implications of the
input-output relationship

y[n] =
M∑

k=0

bkx[n− k] , n ∈ Z

We note that the same value for y[n] is obtained if we pad b with infinitely many zero
coefficients on both sides, i.e., using the sequence h[ · ] defined

h[n] =
{

bn, 0 ≤ n ≤ M ;
0, otherwise,

instead of b. The input-output relationship above becomes

y[n] =
∞∑

k=−∞
h[k]x[n− k] , n ∈ Z (♠)
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2. The sequence h[ · ] is known as the impulse response of the FIR filter with coefficient vector
b. The unit impulse sequence δ[ · ] is defined by

δ[n] =
{

1, n = 0 ;
0, otherwise ,

and is shown below.

1

         δ[n]

                                0                            n

It is easy to show that

x[ · ] = δ[ · ] ⇒ y[ · ] = h[ · ] ,

i.e., h[ · ] is the response of the filter to a unit impulse. (Your task: Convince yourself that
this is so.)

3. The sum in (♠) is known as the (non-circular) convolution of sequences h = h[ · ] and x = x[ · ].
When computed for all n, it defines a new sequence y = y[ · ]. Symbolically, we write

y = h ∗ x

Convolution is commutative in its two arguments. This can be shown by a change in the
summation variable, i.e., k′ = n− k:

∞∑

k=−∞
h[k]x[n− k] =

∞∑

k′=−∞
h[n− k′]x[k′]

Thus
x ∗ h = h ∗ x

4. FIR filters are characterized by the property that h[ · ] has finite duration, i.e., it takes only a
finite number of nonzero values. Other linear time-invariant systems encountered or used in
practice have impulse responses of infinite duration. The convolution sum (♠) is valid for all
such systems, i.e., it is a universal input-output relationship in terms of a single characteristic,
namely the response of the system to a unit impulse. To see why h[ · ] can play that role, note
that by time invariance,

x[ · − k] = δ[ · − k] ⇒ y[ · − k] = h[ · − k]

for any k. Any input x[ · ] can be expressed as a linear combination of time-shifted impulses,
i.e.,

x[ · ] =
∞∑

k=−∞
x[k]δ[ · − k]
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By linearity, the output is then given by

y[ · ] =
∞∑

k=−∞
x[k]h[ · − k]

5. For a fixed n, the convolution sum (♠) involves:

• time-reversing either sequence, e.g., x[k] → x̃[k] = x[−k] ;

• delaying the time-reversed sequence by n samples: x̃[k] → x̃[k − n] = x[n− k] ;

• computing the sum of products
∑

k h[k]x̃[k − n] =
∑

k h[k]x[n− k] .

To determine the entire output sequence y[ · ], this computation is performed for every value
of n.

6. Example. Let the input to an FIR filter with coefficient vector b =
[

2 −1 1 −2
]T be

given by
x[n] = δ[n] + 2δ[n− 1] + 3δ[n− 2]− δ[n− 3]

Clearly, the output y[n] equals zero for n < 0 and n ≥ 3+4 = 7, and thus the output sequence
has finite duration. The nonzero portion y[0 : 6] of y[ · ] is computed below.

k −3 −2 −1 0 1 2 3 4 5 6 y[n]
h[k] 2 −1 1 −2
x[−k] −1 3 2 1 2
x[1− k] −1 3 2 1 3
x[2− k] −1 3 2 1 5
x[3− k] −1 3 2 1 −5
x[4− k] −1 3 2 1 0
x[5− k] −1 3 2 1 −7
x[6− k] −1 3 2 1 2

7. In general, if h and x are finite-duration sequences with nonzero values limited to the activity
intervals 0 : K− 1 and 0 : L− 1 respectively, then y = h ∗x is also a finite-duration sequence
whose nonzero values are limited to the (activity) interval 0 : K + L− 2. We can thus define
the non-circular convolution of two vectors b and s of length K and L by embedding them
into all-zeros sequences, i.e.,

h[n] =
{

b[n], 0 ≤ n ≤ K − 1;
0, otherwise

and x[n] =
{

s[n], 0 ≤ n ≤ L− 1;
0, otherwise

and computing the convolution h ∗ x at time indices 0 : K + L− 2. In other words,

b ∗ s = y[0 : K + L− 2]

From the previous example, we have
[

2 −1 1 −2
]T ∗ [

1 2 3 −1
]T =

[
2 3 5 −5 0 −7 2

]T
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8. Using linearity and/or time invariance, it is easy to show that

b ∗ [0i ; s] = [0i ; b ∗ s]
b ∗ [s ; 0i] = [b ∗ s ; 0i]

b ∗ (αs) = α(b ∗ s)
b ∗ (r + s) = b ∗ r + b ∗ s

where α is a scalar and 0i is an all-zeros vector of length i.

9. Linear convolution of two vectors b and s of length K and L (respectively) produces a vector
of length K + L− 1. An alternative way of obtaining this is by zero-padding each vector to
length K + L− 1, followed by a circular convolution of the two zero-padded vectors:

b ∗ s = [b ; 0L−1] ~ [s ; 0K−1]

This is illustrated in the figure below. The value of the convolution sum is obtained, for n in
0 : K + L− 2, by taking the dot product of either pair of vectors shown.

s0 sn sL-10

b0bnbK-1

0

0 0

00

0 0

. . .. . . . . . . . .

. . .. . .. . .. . .

s0 sn sL-1 00. . . . . . . . .

bK-10 0 . . . bn+1. . .b0bn . . .

K-1 K-1

K-1

(i)

(ii)

• In (i), the shaded portion of the bottom vector is shifted linearly from (flush) left to
(flush) right.

• In (ii), the vector [b ; 0L−1] is circularly reversed and shifted to the right (as needed for
circular convolution).

10. Example. Verify that the vectors c1 and c2 below are identical:

b = [2 -1 1 -2 ].’ ;
s = [1 2 3 -1 ].’ ;
c1 = conv(b,s) ;
B = fft(b,7) ;
S = fft(s,7) ;
c2 = ifft(B.*S) ;

11. If a FIR filter is to be implemented using a fixed-length convolution algorithm (e.g., based
on DFTs of fixed size), the input sequence must be parsed into consecutive blocks of suitable
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length L. Convolution is performed over individual blocks, and the output is obtained using
the relationship

b ∗ [s(1) ; s(2)] = b ∗ [s(1) ; 0L] + b ∗ [0L ; s(2)]
= [b ∗ s(1) ; 0L] + [0L ; b ∗ s(2)]

and its obvious extensions. This is illustrated in the example below. Note the overlap between
the nonzero portions of [b ∗ s(1) ; 06] and [06 ; b ∗ s(2)].

12. Example. Let b = [ 1 −3 −3 1 ]T and

s = [ 1 −2 3 4 4 −2 7 5 1 3 −1 −4 ]T

We divide s into two blocks of length L = 6:

s(1) = [ 1 −2 3 4 4 −2 ]T and s(2) = [ 7 5 1 3 −1 −4 ]T

Using two convolutions, we obtain

b ∗ s(1) = [ 1 −5 6 2 −19 −23 −2 10 −2 ]T

b ∗ s(2) = [ 7 −16 −35 −8 −8 −9 18 11 −4 ]T

Thus

b ∗ s = [b ∗ s(1) ; 06] + [06 ; b ∗ s(2)]

= [ 1 −5 6 2 −19 −23 5 −6 −37 −8 −8 −9 18 11 −4 ]T
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LECTURE 24

Topics: convolution in the z-domain; frequency-selective filters

Textbook References: sections 4.5, 4.6.5

Key Points:

• If

X(z) def=
∞∑

n=−∞
x[n]z−n ,

then the input x[ · ], impulse response h[ · ] and output y[ · ] of a linear time-invariant system
are related by

Y (z) = H(z)X(z)

Thus convolution in the time domain amounts to multiplication in the (so-called) z-domain.

• Ideal filters have amplitude responses which are piecewise constant functions of ω. These
responses are unattainable in practice.

• Ideal filters can be approximated by FIR filters. A longer coefficient vector affords a better
approximation to an ideal amplitude response, at the expense of a longer delay between input
and output.

Theory and Examples:

1. The z-transform of a sequence x = x[ · ] is the power series defined by

X(z) =
∞∑

n=−∞
x[n]z−n

Convergence may be an issue if x[ · ] has infnite duration. Notably, exponential sequences
such as x[n] = zn

0 (for all n) do not have a z-transform except in the trivial case z0 = 0.

2. The z-transform of a finite-duration sequence is always well defined; it was introduced earlier
as the system function of a FIR filter:

H(z) =
M∑

n=0

bnz−n =
∞∑

n=−∞
h[n]z−n

We have also seen that the system function H(z) of the cascade of two FIR filters (labeled 1
and 2) satisfies

H(z) = H1(z)H2(z)

This result was obtained by applying a two-sided exponential input to the cascade.
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δδ H 1
 h  * h

(2)(1)
h 

(1)

H 2

3. By applying an input δ = δ[ · ] to the same cascade, we see (figure above) that the impulse
response of the cascade is given by

h = h(1) ∗ h(2)

Thus convolution of sequences in the time domain is equivalent to multiplication of their
z-transforms.

4. The above result:

• can be restated as y = h ∗ x ⇔ Y (z) = H(z)X(z) ;
• extends to infinite-duration sequences x and h provided both z-transforms converge;
• can be also shown directly by direct multiplication of the power series H(z) and X(z),

i.e., the resulting coefficient of z−n is given by
∑

k h[k]x[n− k].

5. Example. The result
[

2 −1 1 −2
]T ∗ [

1 2 3 −1
]T =

[
2 3 5 −5 0 −7 2

]T

can be also obtained throught the product

(2− z−1 + z−2 − 2z−3)(1 + 2z−1 + 3z−2 − z−3) = 2 + 3z−1 + 5z−2 − 5z−3 − 7z−5 + 2z−6

6. An FIR filter with real-valued coefficients b0, . . . , bM has frequency response

H(ejω) = b0 + b1e
−jω + · · ·+ bMe−jMω

In cases where the coefficients exhibit odd or even symmetry, the amplitude response |H(ejω)|
can be expressed in terms of either cosines or sines.

In the general (not necessarily symmetric) case, it is also easy to write the squared amplitude
response

|H(ejω)|2 = H(ejω)H∗(ejω) = H(ejω)H(e−jω)

as a sum of finitely many cosines. For example, if b = [ 1 2 ]T , then

|H(ejω)|2 = (1 + 2e−jω)(1 + 2ejω) = 5 + 4 cosω

(Your task: verify the last equality.)

7. A finite sum of cosines of different frequencies (i.e., multiples of ω) is a smooth curve that
has no discontinuities or flat sections. This means that the filter with real-valued frequency
response H(ejω) shown below (for ω ∈ (−π, π]) cannot be an FIR filter.

This filter is known as an ideal lowpass filter of unit gain and zero delay. Ideal frequency-
selective filters are characterized by piecewise constant amplitude response and linear phase
response (for the filter shown above, the phase response equals zero at all frequencies). Using
arguments beyond the scope of this course, it can be shown that such filters cannot be
synthesized in practice, whether in FIR form or as any other filter structure.
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H(e    )jω

−π              −ω     0         ω               π c c

A

8. FIR filters with characteristics which approximate those of ideal filters can be obtained using
numerical algorithms. The amplitude (or magnitude) response of a practical lowpass filter
with real coefficients is symmetric about ω = 0 and has the following features:

• Its value varies between A(1− δ) and A(1+ δ) in the passband [0, ωp]; the factor δ is the
passband ripple.

• It has a maximum value of Aε in the stopband [ωs, π]; the factor 1/ε is the stopband
attenuation.

• Its value drops from A(1− δ) to Aε over the transition band [ωp, ωs]; thus the point ωc

(cutoff frequency) in the ideal response is approximated by an interval.

9. The MATLAB filter design and analysis tool (FDATOOL) is a comprehensive interface for
designing digital filters of various types. These designs can be also obtained using MATLAB
command-line functions. The function FIRPM is used for FIR filters. As an example,

b = firpm( M, [0.0 fp fs 0.5]*2, [A A 0 0] );

produces a lowpass FIR filter with coefficient vector b of length M + 1. The passband and
stopband edges are ωp = 2πfp and ωs = 2πfs, respectively. The ideal passband and stopband
gains are A and 0, respectively. (Additional parameters can be inserted to control the relative
amounts of passband ripple and stopband attenuation.)

Your task: Run

b = firpm( 36, [0.0 0.12 0.15 0.5]*2, [1 1 0 0] );

and plot the amplitude and phase response of the filter. Determine the passband ripple δ and
stopband attenuation 1/ε.

10. Approximations to a piecewise constant amplitude response can be obtained using symmetric
coefficient vectors, i.e., such that bn = bM−n. As we saw in a previous reading assignment,
this results in

H(ejω) = e−jωM/2F (ω)

where F (ω) is a real-valued sum of cosines. The amplitude response is |F (ω)|, while the
frequency response is

∠H(ejω) = −Mω

2
+ (0 or π)
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The phase response over the passband has no discontinuities, and is simply given by −Mω/2.
This amounts to a uniform delay of M/2 samples for all sinusoidal components in the pass-
band.

Larger values of M allow for a better approximation to the ideal response (as there are more
parameters available to shape F (ω)); however, they also lead to longer delays between input
and output. This is illustrated in the example below.

11. Example. The delay between input and output is evident in the following example, which
uses the filter designed earlier. Run step by step.

n = (1:500).’ ;
s = exp(-((n-200).^2)/100^2) ;
plot(n,s) ; % slowly varying signal

%
% add noise in the stopband:
%

z = 0.3*cos(0.42*pi*n) + 0.1*cos(0.53*pi*n);
x = s+z ;
plot(n,x)
y = filter(b,1,x) ; % run filter on x
plot(n,y)
hold
plot(n,s) % note delay

12. A lowpass filter can be easily transformed to a highpass filter, and vice versa. In the frequency
domain, this amounts to a frequency shift by π radians per sample. In the time domain, this
is accomplished by the transformation

b̃n = (−1)nbn , n ∈ Z

i.e., multiplying each entry of b by the sinusoid of frequency π. Indeed,

H̃(ejω) =
M∑

n=0

b̃ne−jωn =
M∑

n=0

bnejπne−jωn = H(ej(ω−π))
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