LECTURE 1

Topic: complex numbers
Textbook References: Section 1.3

Key Points:

e A complex number z is a point on a two-dimensional plane (the complex plane). It can be
specified using either Cartesian (x,y) or polar (r, ) coordinates.

e Addition and scaling of complex numbers follows the same rules as for (two-dimensional)
vectors.

Theory and Examples:

1. A complex number z is a point (or vector) on a two-dimensional plane, known as the complex

plane and represented by C.
y / Z=0w)
[
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The Cartesian coordinates of z are

x = Re{z}, the real part of z
= SQm{z}, the imaginary part of z
and the corresponding axes are known as the real and imaginary axes, respectively.
The polar coordinates of z are

= |z|, the modulus, or magnitude, of z

= /z, the angle of z

2. The usual rules for converting between coordinate systems apply:

r = rcosf

y = rsind
r o= ya?+y?

As for the angle 6, it is customary to quote it in radians. Note that 27 rad = 360° = one
full revolution, and thus angles which differ by multiples of 27 are equivalent. Usually, € in



quoted in the interval [0,27) or (—m,7]. We can obtain 6 from (z,y) by careful use of the
arctan function:
6 = arctan (g) + (0 or m)
x

where 7 is added if and only if = is negative.

. Example. Consider the complex numbers z; and z3, where
Re{z1} = -5, Sm{z1} =2

and
|z2| = 4, Lzg = m/6 rad

Your task: Plot these on the complex plane.

The modulus of z; is given by

21| = /(=5)? + 22 = 5.3852

and its angle by
Lz = arctan(—2/5) + 7 = 2.7611 rad

or 158.2Y. Note that 7 was added to the result of arctan(-) because the real part of 2 is
negative.

As for z9, we have

Re{z} = 4cos(m/6) = 2V3 = 3.4641
Sm{ze} = 4sin(n/6) =2

Your task: Using as little algebra as possible, repeat for
Re{z3} =5, Sm{zg} = —2

and
|z4| = 4, Lzqy = —m/6 rad

. Since complex numbers are vectors, expressions such as cz (scaling by a real constant ¢) or
21+ 22 (summation) have the same meaning as in the case of two-dimensional vectors. Clearly,
summation of two complex numbers is easiest to perform using Cartesian coordinates (i.e.,
real and imaginary parts).



LECTURE 2

Topic: lines and circles on the complex plane; complex multiplication and division
Textbook References: section 1.3

Key Points:

e Two complex numbers can be multiplied by expressing each number in the form z = x + jy,
then using distributivity and the rule j2 = —1 (i.e., j is treated as the square root of —1).

e The product of two complex numbers with polar coordinates (r1, 01 ) and (72, #2) is the complex
number with polar coordinates (172, 61 + 602).

e The product of a complex number z and its conjugate z* equals the square modulus |z|?.

e If z has polar coordinates (r,6), its inverse z~! has polar coordinates (r—!, —@).

Theory and Examples:

1. The modulus |z| represents the length of the vector z. Similarly, the expression |z; — 22| gives
the distance between the points z; and z9. Using this concept, we see that the following two
equations in the variable z each have a familiar geometrical interpretation:

e |z — 29| = a, where a is a positive constant, is the set of points z on the complex plane
which are at a fixed distance a from the point zy. This is a circle of radius a centered at
20-

e |z —z1| = |z — 22 is the set of points z on the complex plane which are equidistant from
the points z1; and z3. This is the same as the perpendicular bisector of the line segment
joining 21 and z».

Your task: Sketch the two curves given by the equations
|z —3+4j]=5

and
|2 =3[ = [z + 4/

2. The most common form for a complex number z incorporates the real and imaginary parts

as follows:
z2=x+7jy
This form, together with the convention that j x j = j2 = —1, allows us to multiply two
complex numbers together. For example,
(5—25)(3—4j) = 15—20j — 65 + 852
= 7—26j



3. In polar form, multiplication of complex numbers is simple. If

z1 = 11(cos by + jsinby) and z9 = ro(cos by + jsin fy)
then
2122 = rira(cosfy + jsinfy)(cos by + jsinbhsy)
= 7r172[(cos by cos by — sin 0y sin O2) + j(cos 0 sin Oz + sin 1 cos 62)]
But
cos by cosfy —sinfy sinfly, = cos(fy + 02)
cosfq sinfy +sinfy cosfy = sin(fy + 02)

and thus z = 2129 has modulus equal to the product of the two moduli, and angle equal to
the sum of the two angles.

4. Example. As before, take
21 =95—2j and zp=3—4j

The polar forms are
|z1] = V29, Lz = —0.3805

and
|z2| =5, Lzg = —0.9273

(The angles were obtained using the MATLAB ANGLE function, which returns values between
—m and 7.) Therefore

|z120] = 5V29, L2125 = —0.3805 — 0.9273 = —1.3078
and, in Cartesian form
2120 = 5V29- (cos(—1.3078) 4 jsin(—1.3078))
= 7—726

Extension: Powers of z; and 25, and products thereof, can be also computed easily in polar

form. Thus

12023] = 29°/2.5% =1.1322 x 10°,

/2328 = 5-(—0.3805) + 2 - (—0.9273) = —3.7571
and

2025 = (1.1322 x 10°) - (cos(—3.7571) + jsin(—3.7571))
~ 92442 4+ 565370
where the real and imaginary parts were rounded to the nearest integers. The calculation was

deliberately carried out using low precision (four or five digits) in the intermediate results, in
order to illustrate the accumulation of roundoff errors. The correct result is 92443 + j65374.



5. Division of two complex numbers makes implicit use of the inverse, i.e.,

z1/z0 = 21(1/22) = 2122_1
This can be carried out in a single step by multiplying both the numerator z; and the
denominator zo by the complex conjugate of zo (which differs from zy in the sign of the
imaginary part). Thus If z; =5 — 25 and 22 = 3 — 47, then

z1 5—2j

2 3—4j

32 + 42
23 n 14
~ 25 7o
Here we had an instance of the identity
22" = |z|?

i.e., the product of a complex number and its conjugate equals the (real-valued) square
magnitude of that number.

6. In polar form, dividing two complex numbers corresponds to dividing their magnitudes and
subtracting one angle from the other. This is because

=2l

and therefore
27 = |2l/12)2 = |2)7Y, ZeTl=s2t =22

Your task: Verify the above results. Plot z, z* and 27! for z = 3 — 4j.



Topic: complex exponentials; nt

LECTURE 3

h 100t of a complex number; continuous-time sinusoids

Textbook References: sections 1.3 and 1.4

Key Points:

The generic complex number z = r(cos § + jsin ) can be also written as z = re’?.
As is the case with real exponentials, /(%) = ¢if¢i®

The functions cos f and sin # can be expressed in terms of complex exponentials:

el? + e=90 . ed? — =39
cosf) = ——— and sin = ————
2 27

The equation 2" = e/?, where ¢ is a given angle, has n roots of the form z = e/%; these are
obtained by setting 6 = (¢ + 2km)/n, where k =0,...,n — 1.

The functions cos€ and sinf are both periodic with period 27 (radians), and are shifted
versions of each other.

The generic time-dependent sinusoid A cos(€t + ¢) has three parameters: amplitude A, an-
gular frequency 2 (rad/sec) and initial phase ¢. The cyclic frequency f (Hz) and period T'

(sec) are related to € by
Q

T or

f=1T

Theory and Examples:

1.

Take a complex number z with modulus |z| = r and angle Zz = 6:
z =r(cosf + jsinh)

An alternative form for z is
z=rel?

where we use the identity

0

!’ = cosf + jsinf

This can be obtained from the Taylor series
2 3
2t 3!

by setting t = j6. Grouping the real and imaginary terms separately on the expansion side,
we recognize the two Taylor series

02 o4
cosf = 1—E+I—--~ (real part)
63 0°
sinf = 60— 3 + S (imaginary part)



2. Example. In polar form, z; = —1 4 j and 2 = 1 4 j1/3 are given by
’Zl‘:\@, 421237T/4

and
|z2| = 2, Lzo =7/3

In complex exponential form,

21 = V27674 and 29 = 2e(7/3)
3. The multiplication/division rules for the polar form can be easily explained using the identity
Thus

Jo1 )
7’1€‘ _ . eI (01—02)
roeif2 o

01+62)

7‘16701 ~r26392 = 7“11"26]( and

Question: If z = re/?, what is the complex exponential form of z*?

4. By adding/subtracting the equations
e’ = cosf+jsind
e = cos(—0) + jsin(—6) = cosf — jsinf
we get the following relationships for the sine and cosine functions:

¥ + e=90 . ed? — =39
cos = ——— and sinf = ———
2 27

5. The equation
2"=w,

where z is a complex variable and v is a complex constant, has n complex roots (this is true
for any polynomial of degree n). These roots can be found using the following observations:

e |z|" = |v|, therefore every root z must satisfy |z| = |v|'/"

radius |v|'/" centered at the origin;

, i.e., it must lie on a circle of

e on that circle, the complex number z with
Lz = (Lv)/n

is a root;

e on the same circle, the angles
(Lv)/n+kQ2m/n), k=1,...,n—1

also correspond to roots (the remaining n — 1 roots of the equation).



6. Example. To determine the four roots of
Z =17,

we note that j = e/™2. Since |7] = 1, all the roots of the equation lie on the unit circle. And
since Z/j = m/2, the roots are

GIT/8)  GiGR/8)  iOn/8)  anq I(3T/8)

Your task: Determine and sketch the roots of 23 = —8.

7. The functions cos @ and sin @ (where 6 is in radians) are both periodic with period 2m:
cos(f +2m) = cosé
sin(f +27) = sinf
The cosine has (even) symmetry about § = 0, the sine has odd symmetry (or antisymmetry):

cos(—0) = cosb

sin(—0) = —sinf

Either function can be obtained from the other by shifting # by /2 in the appropriate
direction:

sinf = cos(6 —7/2)
cos = sin(6+ 7/2)

A shift in 6 by 7 (same as —) results in sign reversal in each case:
cos(f+m) = —cosb
sin(0+7) = —sinf

8. The generic continuous-time sinusoid is given by
x(t) = Acos(Qt + @)

where



cosB sin@

1 1+
0 2n an | o 0 2 0
= -1

e A > (is the amplitude

e  is the angular frequency, in rad/sec
e { is in seconds

e ¢ is the initial phase, in radians

Since cos @ has period 27 radians, z(t) has period T' = 27/ seconds. The cyclic frequency
(i.e., periods or cycles per second) is given by

Q
=1/T=—
f=1T=o
and is expressed in Hz = 1/sec = 1 cycle/sec.

. Example. Suppose that you are given the following information about a continuous-time
sinusoid z(t) = A cos(Qt + ¢):

e x(t) > 1.50 for 23.0% of its period;

e it takes 0.02 seconds for the value of the sinusoid to drop from 1.50 to 0.00; and

e 2(0) = —0.3 and the first derivative 2/(0) is positive.

You have three (and then some) independent pieces of information and three unknowns (A,
Q2 and ¢), so you should be able to solve for these parameters.

Justify each of the following results:

e The first piece of information gives A = 1.5/ cos(0.237) = 2.0.
e In addition, the second piece of information gives
0.5m — 0.237
Q
Question: What are the values of f (in Hz) and T (in sec)?

e With A known, the third piece of information gives ¢ = —cos™1(—0.3/2.0) = —1.721
rad.

=0.02 = Q=1357



LECTURE 4

Topic: phasors; discrete-time sinusoids

Textbook References: sections 1.4, 1.5

Key Points:

The stationary phasor of Acos(Q + ¢) is the complex number Ae/?. The sum of two (or
more) sinusoids of arbitrary amplitudes and phases but of identical frequency £ is a sinusoid
of frequency (2. Sinusoids of identical frequency can be added together by taking the complex
sum of their stationary phasors.

The discrete time parameter n counts samples. The (angular) frequency parameter w is an
angle increment (radians/sample). Physical time (seconds) is nowhere involved.

Frequencies w and w + 27 are equivalent (i.e., produce the same signal) for real or complex
sinusoids in discrete time.

Frequencies w and 27w — w can be used alternatively to describe a real sinusoid in discrete
time:
cos(wn + ¢) = cos(—wn —¢) = cos((2m —w)n — @)

The effective range of frequencies for a real sinusoid in discrete time is 0 (lowest) to 7 (highest).

A discrete-time sinusoid is periodic if and only if w is of the form

k
for integers £ and IN. The fundamental period is the smallest value of N for which the above

holds.

Theory and Examples:

1.

2.

Since cosf = Re{el’}, it follows that x(t) is the real part of the time-dependent complex

sinusoid
2(t) = Ae?(+9)

On the complex plane, the point z(¢) moves with constant angular velocity € on a circle of
radius A. Its projection on the real axis equals z(¢). The initial position

2(0) = Ae? |
viewed as a vector, is known as the stationary phasor of x(t).
Two real-valued sinusoids of the same frequency can be added together:
Ajcos(QU + ¢1) + Az cos(QU + p2) = Re {Alej(9t+¢1) + Agej(Qt+¢2)}
= Re {(Alej¢1 + Agej@)emt}
= Acos(Qt + ¢)

10



where ' ' '

Aed? = A1l + Agel??
The result is a sinusoid of the same frequency, whose stationary phasor is the complex (i.e.,
vector) sum of two component stationary phasors.

. Example.
2.7cos(157t + 0.6) + 4.1sin(157t — 1.8) = A cos(157t + ¢)

where
Ae?? = 2.7¢700 4 4.1¢1(-18-7/2)

We convert each term to its Cartesian form, compute the sum and convert back to polar form
to obtain A = 3.0241 and ¢ = 2.1937.

Your task: Fill in the missing steps. What happened to sin(-)?

. A discrete-time signal is a sequence of values (samples) x[n], where n ranges over all integers.
A discrete-time sinusoid has the general form

x[n] = Acos(wn + ¢)

or, in its complex version,
z[n] = Ael@nt9)

Question: How is x[n| related to z[n|?

. Your task: Use MATLAB to generate 100 values of each of the discrete-time sinusoids z1[n]
and xa[n]:

n = 0:99;

wl = pi/25; ql = 2xpi/5;

x1 = cos(wil*n + ql);

w2 2.4; g2 = -1.3;

x2 = cos(w2*n + q2);

bar(n,x1) % discrete bar graph
plot(n,x1), grid % extrapolated graph

bar(n,x2) % no resemblance to a continuous-time sinusoid

11



Depending on its frequency, a discrete-time sinusoid may look similar to, or quite different
from, a continuous-time one.

6. The frequency parameter w is measured in radians, or radians per sample. (Unlike 2, which
is in radians per second). Thus the frequency of a discrete-time sinusoid is just an angle
increment: the argument of cos(-) increases by a fixed amount w with each sample.

Two key observations:

e w and w + 2kw, where k is an integer, represent the same frequency. This is because wn
and (w4 2km)n differ by 2knm radians, i.e., a whole number of revolutions, and therefore
at every time n,

cos(wn + ¢) = cos((w+ 2km)n + ¢)
lontd) _ il(wt2kmnee)

Typically, the range of w is chosen as [0, 27) or (—m, 7.

e In the real-valued case, either w or —w can be used to express the same sinusoid. This
is due to the identity cos @ = cos(—0), which implies that for every n,

cos(wn + @) = cos(—wn — @)

As a result, the range of w for real-valued sinusoids can be limited to [0, 7.

Same value obtained
for cos(.) - 0

7. Example. We are asked to express

z[n] = &I (BT7/13)nt7/8) and x[n] = cos((427/13)n — 57/6)

using the smallest positive equivalent frequency w in each case. Note that both frequencies
(37m/13 and 427/13) are greater than 2w, so we need to subtract multiples of 27. For the
complex-valued sinusoid, the answer is

z[n] _ ej((117r/13)n+7r/8)

For the real-valued sinusoid, we have

42 1 42 1
i 2r = —67T and il 47 = ——OW
13 13 13 13

Therefore the answer is

x[n] = cos((107w/13)n + 57/6)

12



8. Your task: Find simple expressions for z[n] = Acos(wn + ¢) when w = 0 (lowest possible
frequency) and w = 7 (highest possible frequency). Also: Modify the MATLAB script given
earlier to compute and plot 100 values of the high-frequency sinusoid

x3[n] = cos((247/25)n + 27 /5)

Note that the frequencies of x1[n] and z3[n] are complementary to each other in the interval
[0, 7).

9. The fundamental period of z[n] is the smallest integer N such that
(Vn) z[n + N| = z[n]
If no such N exists, then the signal is nonperiodic (or aperiodic).

The sequences cos(wn + ¢) and e/“"+®) are repetitions of a fixed vector of N values if and
only if the argument wn + ¢ changes by an exact multiple of 27 every N time indices. In
other words, if and only if

k
wN =2kr <& w:N'QTr

for some integer k. The smallest value of N satisfying the above relationship is the funda-
mental period.

10. Example. Shown is the fundamental period N (where periodic).

w=0 == N=1
w=mw = N=2
w=10 = N=o00 (ie., nonperiodic)
w=10mr/13 = N =13
w=11lr/13 = N =26

Note that for a periodic discrete-time sinusoid, the fundamental period does not necessarily
equal 27 /w (as was the case with continuous-time sinusoids).

13



LECTURE 5

Topic: sampling of continuous-time sinusoids
Textbook References: section 1.6

Key Points:

Sampling a continuous-time sinusoid at a rate of fs = 1/Ts (samples/second) produces a
discrete-time sinusoid.

If the continuous-time sinusoid has angular frequency 2 = 27 f = 27 /T, the resulting discrete-
time sinusoid has angular frequency

At high sampling rates, discrete-time samples capture the variation of the continuous-time
signal in great detail.

Two different sampling rates fs = 1/Ts and f, = 1/T. will produce samples having the same
effective frequency provided the sum Ts + T, or the difference T — T, is an integer multiple
of T=1/f.

Theory and Examples:

1. The sampling formula

z[n] = x(nTs)

produces a sequence of samples z[n| from a continuous-time signal z(t). Ty is the sampling
period and 1/Ty is the sampling rate. Applied to the continuous-time sinusoid

x(t) = cos(Qt + ¢) ,
this formula produces the discrete-time sinusoid

z[n] = cos(QTsn + ¢)

. Example. The graph below shows a segment of the sinusoid

x(t) = cos((400m/3)t — 7/8)

Your task: Using two types of stem lines, mark the samples in each of

zi[n] = cos((2w/5)n — 7/8) (i.e., Ts = 3.0 ms)
xo[n] = cos((2w/3)n — m/8) (i.e., Ts = 5.0 ms)

14



3. The frequency of the discrete-time sinusoid obtained by sampling is

T,
f o - 25

w s ™ fs T

Using this equation, it is easy to determine the relationship between sampling rate fs (sam-
ples/sec) to the frequency f (Hz) in order for the discrete-time sinusoid to be periodic.

Questions:

e What is this relationship?
e What is the equivalent condition in terms of T and T'7
e For what values of Ty is the discrete-time sequence z[n| constant in n?

e For what values of T is z[-] of the form ...,a,—a,a,—a,...?

4. If the ratio T, /T is small (i.e., fs/f is large), the sequence of samples z[n] closely tracks the
variation in z(t). The smaller the ratio T, /T, the easier it becomes to interpolate the discrete
samples so as to approximate to the continuous-time signal. In effect, this is what MATLAB
does in producing a continuous plot.

5. The range of values
Ts €10,7/2] or equivalently  fs € [2f, o0

corresponds to w € [0, 7|, which is the effective frequency range for real sinusoids. This means
that if Ts > T'/2, or equivalently, if fs < 2f, the sequence of samples obtained from x(t) has
the same frequency as one obtained using a smaller sampling period (or higher sampling
rate). There are, in fact, infinitely many sampling rates that produce effectively the same
w in z[n]. To see this, recall that w and w' can be used to describe the same discrete-time
sinusoid provided

W' = dw+ 2kw

15



for some integer k. Thus if fs and f! are two sampling rates such that

L0,
fs fé
or equivalently, if
Ts +T. =kT

then the two resulting sample sequences will have the same (angular) frequency, provided
that frequency is expressed in the interval [0, 7.

. Example. Consider the continuous-time sinusoid
x(t) = cos((4007/3)t — w/8)
and the discrete-time sinusoids

zi[n] = cos((2w/5)n —m/8) (as before)
zg[n] = cos((2w/5)n + 7/8)

Here T'=15.0 ms, f = 200/3 Hz.

e The smallest Ts which produces z1[-] equals (from w = QT5)

27 3

LA S )
5 4007 s

The remaining values of Ts which produce x| -] are given by
Ty =3.0+k(15.0) ms, k=1,2,...
o As for x3[-], we use cos(—0) = cos(f) to express it as
x3[n] = cos(—(2m/5)n — /8)
The values of T which produce x3[-] are thus
T, = —3.0+ k(15.0) ms, k=0,1,...
Since T is necessarily positive, it follows that

T, =12.0 + k(15.0) ms, k=1,2,...

16



LECTURE 6

Topic: aliasing
Textbook References: section 1.6
Key Points:
e Two continuous-time sinusoids having different frequencies f and f’ (Hz) may, when sampled

at the same sampling rate fs, produce sample sequences having effectively the same frequency.
This phenomenon is known as aliasing, and occurs when

f + f/ = kfs
for some integer k.

e If a continuous-time signal consisting of additive sinusoidal components is sampled uniformly,
reconstruction of that signal from its samples is impossible if aliasing has occurred between
any two components at different frequencies.

e [f the sinusoidal components of a continuous-time signal span the frequency range 0 to fp
(Hz), aliasing is avoided if and only if the sampling rate f; exceeds 2fp, a figure known as
the Nyquist rate.

Theory and Examples:

1. We saw that a continuous-time sinusoid of frequency f = 1/7 (Hz) can be sampled at two
different rates fs = 1/Ts and f = 1/T} to produce sample sequences having the same effective
frequency. This happens whenever

Ts +T. =kT

for some integer k.

2. An analogous phenomenon occurs when two continuous-time sinusoids having different fre-
quencies f and f’ are sampled at the same rate fs: depending on the value of f,, the two
sample sequences may have the same effective frequency. When this happens, we say that
f and [ are aliases (of each other) with respect to the sampling rate fs. In mathematical
terms, we know that )

f

w=2T- and W =27 =
Is [s
can be used to represent the same discrete-time sinusoid provided
W = tw + 2knw

for some integer k. Thus f and f’ are aliases with respect to fs provided

f:tf/:kfs

17



3. Example. Let f = 150 Hz and f; = 400 samples/sec. Then the aliases of f are given (in
Hz) by
1" =150 + k(400) and 1= =150 + k(400)

If we reduce fs to 280 samples/sec, then the aliases of f are given by
=150 + k(280) and /= —150 + k(280)

Your task: In each case (fs = 400 and fs; = 280), determine all the aliases in the range 0 to
2,000 Hz.

4. Example. Suppose that x(t) is a sinusoid whose frequency is between 600 and 800 Hz. It is
sampled at a rate f; = 400 samples/sec to produce

z[n] = 4.2 cos(0.75mn — 0.3)

This information suffices to determine x(t), i.e., reconstruct the signal from its samples. First,
we note that F

2w =0T = [ = (0.375)(400) = 150 Hz

S
which is outside the given frequency range. From the previous example, the only alias of f
in the range [600, 800] Hz is f’ = 650 Hz. This is the correct frequency for z(t), and

x(t) = 4.2 cos(13007t + 0.3)
Question: Why was the initial phase inverted (between x(t) and x[n])?

5. Analog-to-digital conversion involves sampling a signal x(t) at a rate fs; and storing the sam-
ples in digital form (i.e., using finite precision). Digital-to-analog conversion is the reverse
process of reconstructing x(¢) from its samples. If z(¢) is a sum of many sinusoidal compo-
nents, then faithful reconstruction is impossible if aliasing has taken place, i.e., if two or more
components of z(t) have frequencies which are aliases of each other with respect of fs.

Your task: Convince yourself that this is so by revisiting the previous example. If the
same sample sequence z[n| had represented the sum of two sinusoids in continuous time, at
frequencies 150 and 650 Hz, could you have written an equation for z(¢) using the given
formula for z[n| only?

6. When sampling a signal x(¢) containing many different frequencies in the range [0, fg] Hz (B
here stands for bandwidth), aliasing can be avoided if the sampling rate is greater than 2fp.
One way of showing this is by plotting all aliases of frequencies in the given range [0, fp],
using the equations derived earlier:

f=Ff+kfs (top axis)

and
f=—f+kfs (bottom axis)

(Plot on next page.) Each value of k corresponds to a translate of [0, fg] on the frequency
axis. Aliasing is avoided when no two bands overlap (except at multiples of fs). As can be
seen from the figure, this is ensured if fs > 2fp.

18
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Your task: Explain why aliasing occurs when f; = 2fp — d, where ¢ is positive amount less
than, say, fp. Find two frequencies in the interval [0, fg]| that are aliases of each other with
respect to fs.
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LECTURE 7

Topic: matrix-vector product; matrix of a linear transformation; matrix-matrix product
Textbook References: sections 2.1, 2.2.1, 2.2.2
Key Points:

e The matrix-vector product Ax, where A is a m x n matrix and x is a n-dimensional column

vector, is computed by taking the dot product of each row of A with x. The result is a
m-~dimensional column vector.

e For a fixed matrix A, the product Ax is linear in x:
A(clx(l) + 02x(2)) = 1 AxY 4 o Ax?)

In other words, A acts as a linear transformation, or linear system, which maps n-dimensional
vectors to m-dimensional ones.

e Every linear transformation, or linear system, R — R™ has a m X n matrix A associated
with it. Each column of A is obtained by applying that transformation to the respective
standard n-dimensional unit vector.

e If A is m x p and B is p X n, then the product AB is a m X n matrix whose (i,j)th element
is the dot product of the i row of A and the j™ column of B.

Theory and Examples:

1. A m x n matrix consists of entries (or elements) a;;, where i and j are the row and column
indices, respectively. The space of all real-valued m x n matrices is denoted by R™*™,

2. A column vector is a matrix consisting of one column only; a row vector is a matrix consisting
of one row only. The transpose operator - I converts row vectors to column vectors and vice
versa. By default, a lower-case boldface letter such as a corresponds to a column vector. In
situations where the orientation (row or column) of a vector is immaterial, we simply write

a=(ai,...,an)
which is a vector in R™.

3. The sum S = A + B of two matrices of the same dimension is obtained by adding respective
entries together:
sij = @ij + bij
The matrix cA, where c is a real number, has the same dimensions as A and is obtained by
scaling each entry of A by c.
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4. If A is a m X n matrix and x is a n x 1 (column) vector, then
y = Ax
is a m x 1 vector such that

(Vi) yi=) aiym,
j=1

In other words, the i entry of y is the dot product of the i*" row of A with x.

We will also view the product y = Ax as a linear combination of the columns of A with
coefficients given by the (respective) entries of x.

I EIRE

5. Example.

6. A vector of the form
ClX(l) + 02x(2)

where ¢; and co are scalars, is known as a linear combination of the vectors x(M and x®.

For a fixed matrix A, the product Ax is linear in X, i.e., it has the property that
A(erxM 4+ 6x?) = ¢ AxYD 4 ¢ Ax?)

for any vectors x(, x@ and scalars ¢1, ¢o. This is known as the superposition property, and
is easily proved by considering the i*" entry on each side:

Z%‘j (Clwg»l) + 02965»2)) = Zmﬂﬁ-” + co Zaz‘jxf)
j=1 j=1

j=1

We say that a m x n matrix A represents a linear transformation of R"™ to R". Such a linear
transformation is also referred to as a linear system with n-dimensional input vector x and
m-~dimensional output vector y:

y = Ax

7. Example. Suppose the 2 x n matrix A and the n-dimensional column vectors u and v are
such that
Au = -1 and Av = o
N 4 | -2
Then
Au—2v)= { _1; }
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8.

10.

11.

Example. The linear transformation represented by the matrix

0 01O

0 0 01

A= 1 0 0 O

01 0 O

is such that

b 3

A T2 _ Ty

T3 T

Ty xI9

Thus the effect of applying A to an arbitrary vector x is to shift the entries of x up (or
down) by two positions in a circular fashion. This linear transformation is an example of a
permutation, and all permutations are linear.

Your task: You are given an image whose dimensions match those of a 36 inch (diagonal)
display with an aspect ratio of 16 (horizontal) to 9 (vertical). You want to display the image
on a 27 inch (diagonal) display with an aspect ratio of 4 (horizontal) to 3 (vertical) such that
the image is as large as possible without distortion or cropping. Find the matrix

a 0
[0 a]—aI

which accomplishes this. (Note: I is the identity matrix.)

Conversely, every linear transformation A : R — R™ has a m X n matrix associated with
it. This can be seen by expressing an arbitrary input vector x as a linear combination of the
standard unit vectors:

x =zeM + ...+ 2,6

By linearity of A(-), the output vector y = A(x) equals
y=z1A(eW) 4 4z, A(e™)

If we form a m x n matrix A = [a;;] using A(eV), ..., A(e™) as its columns (in that order),
then the output vector y (above) is, in effect, a linear combination of the columns of A with
coefficients 1, ..., z,. In other words,

(Vi) Yi = Zaijl”j
j=1

and thus y = A(x) is also given by
y = Ax

Example. If the linear transformation A(-): R3 — R3 is such that

1 3 0 -1 0 1
A 0 = -1/, A 1 = 5 and A = -1
0 0 0 4 1 1
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12.

13.

14.

15.

then the matrix A of A(-) is given by

3 —1 1
A= -1 5 -1
0o 4 1

Example. Suppose now that A(-) : R? — R? represents the projection of a two-dimensional
vector x = (x1,x2) onto the horizontal (i.e., x1) axis. From vector geometry, we know that
this is a linear transformation: the projection of a sum of (possibly scaled) vectors is the
sum of their projections. We can therefore obtain the matrix A by considering the result of
applying A(-) to the two unit vectors (1,0) and (0,1). We have

sLo]=lo] ali]=[5]

10
A pu—
o o]
Example. Similarly, the rotation of a two-dimensional vector through a fixed angle is linear:

when two vectors are rotated through the same angle, their (possibly scaled) sum is also
rotated through that angle. If B is the matrix representing a counterclockwise rotation by

300, then
s[o]-[MR] = [1]-[R ]

5= [1s k]

Question: How were these values obtained?

and consequently

and thus

If A is m x p and B is p x n, then the product AB is the m x n matrix whose (4, )" element
is the dot product of the i*® row of A and the j* column of B:

p
(AB)Z] = Zaikbkj
k=1

The number of columns of A must be the same as the number of rows of B (equal to p in
this case, and also referred to as the inner dimension in the product).

Example. If
1 -2
A_[f _(1) _‘11] and B=1|0 3
1 5
then
6 13
AB[O _7]
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LECTURE 8

Topic: cascaded linear transformations; row and column selection; permutation matrices; matrix
transpose

Textbook References: sections 2.2.3, 2.3

Key Points:

AB represents two linear systems connected in cascade (tandem, series), with system A
downstream from system B.

Associativity: (AB)C = A(BC) & ABC

Commutativity does not hold in general, i.e., AB # BA.

To select the j™ column of a matrix, we right-multiply it by the j* standard unit vector of
the appropriate size. To select the i*" row of a matrix, we left-multiply it by the i*" standard
unit vector.

Transposition and multiplication: (AB)T = BT AT

A permutation matrix is a square matrix whose columns are distinct standard unit vec-
tors. Right-multiplication by a permutation matrix results in column permutation; left-
multiplication results in row permutation.

If P is a permutation matrix, then PTP = I (the identity matrix). Thus the inverse of a
permutation matrix is its transpose.

Theory and Examples:

1.

Viewed as a linear transformation, the product AB represents the cascade (series) connection
of B followed by A, as shown below. This means that for a n-dimensional input vector x,
the output y is given by

y = (AB)x = A(Bx)

Bx y = ABx

To see why this is so, take x = e, ie, any standard unit vector in R™. Then

e (AB)el) is the j* column of the matrix AB. By definition of AB, the i*" entry in that
column equals the dot product of the i** row of A and the j* column of B.

e Bel) is the j* column of B. Thus the (i, 7)™ entry of A(Bel?)) equals the dot product
of the i*" row of A and the j* column of B.

Therefore (AB)x = A(Bx) for x = e(). This result extends to all vectors in R". (Question:
Why?)
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. Associativity: (AB)C = A(BC) o ABC, with obvious extensions to products involving

four or more matrices.

. In general,
AB # BA

i.e., matrix multiplication is not commutative—even in cases where both products are well-
defined and have the same dimensions (this happens if and only if both A and B are square
matrices of the same dimensions). There are, however, exceptions.

. Your task: Show that if A represents projection onto the horizontal axis and B represents
counterclockwise rotation by an angle equal to 7/6, then AB # BA. This can be shown
both algebraically (i.e, by computing the products) and geometrically.

. If A is a m x n matrix and eV is the j* standard unit vector in R"*!, then

Ael) = jth column of A

This follows directly from the definition of the matrix-vector product, where Ax is a linear
combination of the columns of A with coefficients given by the respective entries of x.

. Example. Suppose

a B v 6
A=k X p v
¢ x ¥ ow

Then
) 8 ) 8426 00 3 2
A =1 A|, A =] A+2vw and A =| A 2vw
0 0 + 2w 00 2w
0 X 2 X 0 2 X

. The columns of a m x n matrix A are permuted by selecting all of them in a particular order.
This amounts to taking the product AP, where P is a permutation matrix, i.e.,

e the columns of P are the standard n-dimensional unit vectors (in any order); equivalently,

e the rows of P are the standard n-dimensional unit vectors (in any order).
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8.

9.

10.

11.

12.

13.

Example.

o0 B 4 6 0 010 v 5 a B
00 01

K A u v 1000:,uy/<c)\

¢ x v w 010 0 v ow ¢ X

If A is m x n, its transpose A’ is the n x m matrix whose (4, )" entry equals the (j, 7)™
entry of A. Thus the i*" row of AT equals the (transpose of ) the ih column of A, and vice

versa (for all 7).

A square matrix A is symmetric if A = AT (i.e., i'" row and i*® column are the same vector).
Example.
[ a
[a b ¢ ]T = b
| ¢
T
i 5 2 6
2 4 Tl 47
6 7 | -
12 371" (1 2 3
4 5 = 2 45 (symmetric matrix)
3 5 6 | | 3 5 6
The identity

(AB)T = BTAT
(assuming that the product AB exists) can be shown by considering the (4, ;)" element of
(AB)7, i.e., the (j,7)™ element of AB. This equals the dot product of the j'" row of A and

the it" column of B; which is the same as the dot product of the the j' column of AT and
the i*" row of B”. This is just the (4,7)™ element of BTAT.

Row selections on a m xn matrix A are accomplished by left-multiplying A by the appropriate
standard (row) unit vectors: ‘
(eMNTA =i row of A

If P is a m x m permutation matrix, then PA is a permutation of the rows of A.

Question: If n = m and AP puts the columns of A in a particular order, what should Q be
so that QA results in the same reordering applied to row indices (instead of column indices)?

Example.
" By 6]
[001} K A p v :[qﬁxww]
[ ¢ X ¥ w ]
00 1)l[a B8 v 6] o x Y w
100 K A p v = a B v 6
01 0]]lo x ¥ w | K X u v



14. If P is a permutation matrix, then
P'P =1

This is shown by considering the (i, )" element of PP, which equals the dot product of
the i and j* columns of P. Since the columns of P are distinct standard unit vectors, it
follows that the dot product equals unity if ¢ = j, zero otherwise.
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LECTURE 9

Topic: introduction to matrix inversion; Gaussian elimination
Textbook References: sections 2.4, 2.5, 2.6
Key Points:

e A n xn matrix A is nonsingular, i.e., it possesses an inverse A~!, if and only if the equation
Ax = b has a unique solution x (equal to A~'b) for every b.

e AA~l=1
° (AT)—l — (A—l)T
e (AB)'=B!A"!

e A triangular matrix is nonsingular if all entries on its leading diagonal are nonzero. It can be
inverted using forward or backward substitution.

e In Gaussian elimination, the n x n system of simultaneous equations Ax = b is reduced to
an upper triangular system Ux = ¢, which is then solved using backward substitution.

e The process of obtaining U from A (and ¢ from b) is known as forward elimination, and
proceeds in n — 1 steps. In the j' step, the j' equation is used for eliminating variable z;
from equations below it.

e A square matrix A is nonsingular if and only if exactly one variable (no more) is eliminated
in each step of the forward elimination process.

Theory and Examples:

1. Given the output of a linear system for which the matrix A is known, is it possible to
determine its input? This would involve solving the equation

Ax=D>b

where x is the unknown input vector of dimension n, and y = b is the observed output vector
of dimension m.

2. If the entries of A are random real numbers (with infinite precision), the following statements
can be made about Ax = b in probabilistic terms:

e If m < n, any vector b is almost certainly a valid system output, in which case a solution
x exists. The solution is not, however unique, and thus the “true” input vector cannot
be determined.

e If m > n, a randomly chosen vector b is almost certainly not a valid system output, in
which case no solution x exists.

o If m = n, every vector b is almost certainly a valid system output corresponding to a
unique system input x. A solution x therefore exists for every b, and is unique.
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3. There are, of course, exceptions to the “almost certain” rules given above. For example, in
the case m = n = 2, taking A as any of the matrices

0 0 10 or 1 3

0 0]~ 0 0 2 6
will result in the equation Ax = b having a solution for certain values of b only, and that
solution will not be unique.
(Your task: In each case, find a vector b which is not expressible as a linear combination of

the columns of A. Also, show that Ax = 0 has multiple solutions x.)

4. The case m = n is by far the most important, and is the key to understanding what happens
in the other two cases (m < n and m > n). A random choice of a n X n matrix A is almost
certain to have the property known as nonsingularity:

A square matrix A is nonsingular if and only if the equation Ax = b has a unique solution

for every vector b. It is singular otherwise.

5. If A is nonsingular, every vector b has a unique x associated with it, such that Ax = b. It is
not difficult to show that the mapping of b’s to x’s is linear, i.e., there is a matrix A~! such
that

Ax=b & x=A"'b

Thus the inverse A~! exists if and only if A is nonsingular.
6. Useful properties of the inverse of a nonsingular matrix A:
(A7)t =a
AAT=ATA=1

e AT is also nonsingular, and

(AT)—I — (A—I)T
This follows easily by taking the transpose of both sides of AA™! = 1.

e If B is also nonsingular, then so is the product AB, and

(AB)"'=B'A™!
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7.

10.

Permutation matrices are nonsingular, and their inverse is given by their transpose: recall
that PTP = I. Thus for example,

-1

010 0 01
0 01 =100
1 00 010

. A diagonal matrix D is defined by the property that d;; = 0 for ¢ # j; i.e., all entries except

those on the leading diagonal are zero. The equation Dx = b is equivalent to

and has a unique solution given by z; = di_ilbi for all 4. This requires that all d;;’s are nonzero,
which is both a necessary and sufficient condition for a diagonal matrix D to be nonsingular.
Thus for afvy # 0, we have

-1

a 0 0 /a0 0
08 0 = 0 1/6 0
0 0 ~ 0 0 1/y

. Triangular matrices are of particular importance in both the theoretical development of linear

algebra and its practical, real-world applications. The defining feature of a lower (or upper)
triangular matrix is that all elements above (or below, respectively) the leading diagonal are
zero. If L is lower triangular, the equation Lx = b is expanded as

1y = b
lo121 + loomo = by
enlxl + £n2x2 + -+ Ennxn = by

and is easily solved using the procedure known as forward substitution: x; is obtained from
the first equation, then substituted into the second equation to obtain zo, and so on and
so forth for the remaining x;’s. Forward substitution works provided that all the leading
diagonal coeflicients £;; are nonzero. This condition is both necessary and sufficient for L to
be nonsingular.

Upper triangular matrices U have similar properties. The equation Ux = b is solved by
backward substitution (i.e., z, — z,—1 — ... — x1) provided again that all the leading
diagonal elements of U are nonzero.

Example. Forward substitution in

2 0 0 1 b1
Lx=|5 -1 0 x2 | = | b2
1 -2 3 T3 b3

gives
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11.

12.

13.

2
5b1 B _ 5bhy
7 — X9 = by = To = 5 by
by 5b1 3by  2by by
— =2 ——b =b =— - — 4+ =
2 ( 5 2> + 3x3 3 = T3 5 3 3
Therefore
X1 1/2 0 0 b1 1/2 0 0
| =1|5/2 -1 0 by = L7'=|5/2 -1 0
T3 3/2 —2/3 1/3 b3 3/2 —2/3 1/3

In general, the matrix-vector equation Ax = b, where A is n X n, represents a system of n
linear equations in n unknowns z1,...,z,. If A is nonsingular, the (unique) solution can be
found using Gaussian elimination and its variants.

The principle behind Gaussian elimination is the equivalence of
Ax=b and MAx = Mb

where M is a nonsingular n x n matrix. The solution is usually obtained in two phases, each
consisting of n — 1 steps:

e the forward elimination phase reduces the system to an equivalent upper triangular
system Ux = c;

e the backward substitution phase solves the upper triangular system and produces x.

We illustrate forward elimination for the 3 x 3 equation

2 1 -1 1 6
Ax = 4 0 -1 To | = 6
-8 2 3 T3 —10

Briefly:
e The first step eliminates the variable z1 from the second and third equations, while the
second step eliminates x9 from the third equation.

e In the j*" step (where j = 1,2), a multiple (xm;;) of the j'! row is added to each row
below it (i.e., with row index i > j).

e The multipliers m;; (listed in the column labeled m) are determined by taking ratios of
entries in the j* column. The denominator of each ratio is the (4, 7)™ entry, which is
also known as the j*® pivot (shown in a box).
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14.

15.

m T T9 T3 b
1 ~1 6

—2 4 0 —1 6
4 —8 2 3 ~10
2 1 ~1 6

0 1 —6

3 0 6 ~1 14
2 1 -1 6

0 —2 1 —6

0 0 2 —4

Forward elimination has thus resulted in the upper triangular system of equations

201+ 20 — 3 = 6
—2r9+1x3 = —6
203 = —4
which is easily solved by backward substitution to produce z3 = -2 — x93 =2 — x1 =1,

ie,x=[1 2 -2].

Gaussian elimination can be completed (as outlined above) provided all diagonal elements, or
pivots, obtained in the forward elimination phase are nonzero. If a zero pivot is encountered
in the j* < n — 1 step, the j* equation cannot be used to eliminate x;j from the equations
below it. This difficulty is resolved by a simple row swap provided one of those equations has
a nonzero coefficient for z;.

e If all zero pivots can be resolved by row swaps, and the the final form of the n*® equation
has a nonzero coefficient for x,,, then Ax = b has a unique solution x for every b, i.e.,
the matrix A is nonsingular.

e Otherwise—if at some j*" step all remaining (unused) equations have a nonzero coeffi-
cient for x;, or if the final form of the n'™ equation has a zero coefficient for z,,—the
matrix A is singular.
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LECTURE 10

Topics: inner products, norms and angles; projection
Textbook References: sections 2.10.1-2.10.4, 2.12.1
Key Points:

e The norm, or length, of a real-valued vector a is given by

laf = (a,a)!/*
where (-, -) denotes inner (dot) product.
e The angle 6 between two vectors a and b satisfies
(a,b)
cosf = —————
lall - [[bll

e The (orthogonal) projection of b on a is the vector Aa such that b — Aa is orthogonal to a,
i.e., (b — Aa, a) = 0. Therefore
_ (a,b)
all?

e The range (or column space) R(V) of the m x n matrix
V = [ vih v ]
consists of all linear combinations of columns of V| i.e., vectors of the form Ve.

e The projection of a m-dimensional vector s onto the range R(V) of a matrix V is the unique
vector § in R(V) with the property that s — § is orthogonal to every column of V. It is the
point in R(V) closest to s.

e If the columns of V are pairwise orthogonal, then projection onto R(V) amounts simply to
projecting onto each column, then summing the projections.

e A m x m matrix V consisting of nontrivial (# 0) pairwise orthogonal vectors is nonsingular.
Any vector s in R™ can be expressed as s = Ve, where c is found by projecting s onto each
of the columns of V.

Theory and Examples:

1. The m x m system Ax = b can be solved in a particularly simple way (without Gaussian
elimination) if any two columns of A have zero dot product. To determine the value of any
x;, we take dot products of both sides of the equation Ax = b with the 4 column a = al?)
(here 0; denotes a column vector of i zeros):

Ax =D
(aTA)x = a’b
[0?,1 ala O?n,j}x = a’b
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In other words,
a’b
Tj = ——
J ala

provided a’a # 0, i.e., a is not an all-zeros vector.

. For real-valued vectors, the dot product is also known as inner product and plays an important
role in the development of vector geometry. If a and b are real and m-dimensional, their inner
product is denoted and given by

m
(ab) = a’b = > ab;
i=1
It is commutative, i.e.,

(a,b) = a’b=bla = (b,a),

and also linear in one of the two arguments when the other one is kept constant:

(ra) 4+ pa® b) = ¢1(@®,b) + c3(a?, b)

. The norm, or length, of a is defined by

m 1/2
la]| = (a,a)/? = <Za?)
=1

and is strictly positive unless a = 0. Scaling a by a constant ¢ results in ||a|| being scaled by
lc].

. Two vectors a and b are orthogonal (denoted by a_Lb) if (a,b) = 0. This notion of orthogo-
nality agrees with geometry, since it implies that

la+b||> = (a+b,a+b)
= (a,a)+2(a,b) + (b,b) =|al®*+ |b|?

. From geometry, we know that the (orthogonal) projection of b onto a is the vector f = A\a
such that b — f is orthogonal to a. This condition determines the value of \:

(a, b)
B

(b—MAa,a) =0 & A=

D
—«14444444 o
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6. We also have ||b|| cosf = A||a||, and therefore

(a,b)

cosf = ————
[all - bl

(assuming that neither a nor b is an all-zeros vector). The range of values of 6 is [0, 7].

7. Example. Consider the three vectors

vl = [ 5 1 3 1]
v =11 3 -1 =5
v® = 16 6 -6 6]
Then:
o [V =[v?=|v®|/2=6

° V(l)J_V(Q)
e the projection of v® onto v(1) equals —v(1)

e the angle between v(1) and v(®) equals 27 /3

8. As we saw earlier, the m x m equation Ax = b can be solved easily using inner products if
the columns of A are pairwise orthogonal (and nontrivial, i.e., none is the all-zeros vector 0).
We will rewrite this equation as

Ve = s,

where, instead of considering V as a linear system (with input ¢ and output s), we will adopt
a different view. Specifically,
V= [ v v ]

is an ordered set of m orthogonal reference vectors v\, which when properly combined
linearly—with coefficients c;—can produce any m-dimensional vector s. The equation Vc = s
(with ¢ unknown) is therefore a signal representation problem.

9. If the matrix V has n < m orthogonal columns, then the set of linear combinations of the
form Ve—known as the range of V and denoted by R(V)—does not include every vector in
R™. In geometric terms, R(V) is a “flat” subset of R™ containing the origin, also known as
a linear subspace. For example, if V consists of n = 2 nontrivial orthogonal columns of length
m = 3, then R(V) is a two-dimensional plane in the three-dimensional Euclidean space R3.

In such cases, a generic vector s € R™ cannot be represented exactly as Vc; at best, § = V¢
approximates s. The linear least squares approximation of s by the columns of V is defined
by the property that the distance between s and § is a minimum. It is therefore obtained by
minimizing

Is - Ve]

over all n-dimensional vectors c.
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10.

11.

12.

The minimization can performed equivalently on the squared distance

|s —Ve||> = (s— Ve, s—Vc)
Is||> = 2¢TVTs + T VTVe

”S||2 + Z(”V(])HQCJQ _ 2<V(j),S>Cj>
j=1

where the last equality was obtained using the fact that VIV is a diagonal matrix with each
(4, 7)™ entry given by ||v()||2. It suffices to minimize each term in the > ; sum, which is a
quadratic in ¢j. Noting that

t? —at = t(t —a)

is minimized at ¢t = a/2, we obtain the solution

(v9), s) ,
= s 1<5<
CJ ||V(])”2 ( =7 Tl)
The coefficients cy,...,c; are the same as those used for projecting s onto vl v

respectively. Thus
n
s=Vc = chv(j)
j=1

is the sum of the projections of s onto each one of the columns of V.
The difference s — 8, known as the error vector, is orthogonal to each of the columns of V.
This follows from the fact that for a given j, s — cjv(j ) is orthogonal to v(9); and > £ civ®

is orthogonal to v also.

These results are extensions of familiar facts in three-dimensional Euclidean geometry:

e The distance of a fixed point s from variable point on a (two-dimensional) plane con-
taining the origin is minimized at the projection of s onto that plane; the projection the
unique vector § such that s — § is orthogonal to every vector on the plane.

o If vV # 0 and v(@ = 0 are two orthogonal vectors on the plane, then the projection §
of s onto the plane can be formed by taking the vector sum of the projections of § onto
v and v@.

Example. The columns of

1 3
V=[vl)v®@] = | 2 4
1 5
are orthogonal and such that ||v(!)||2 = 6 and ||v(?||2 = 50. The projection of s = [ —6 2 7]
onto R(V) is given by
§ = ev) 4 ev® |
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R(V)
where
o =6-47 1 —1848435 1
b 6 T2 2 5