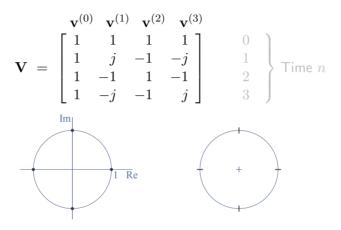
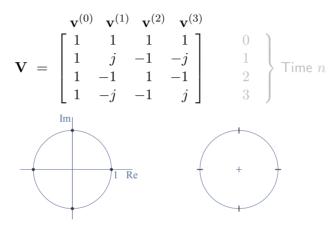
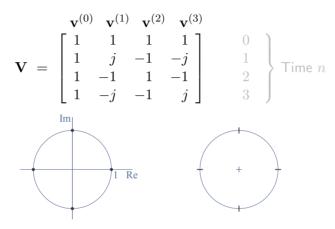
$v^{(0)} v^{(1)} v^{(2)} v^{(3)}$

$$\mathbf{V} = \begin{bmatrix} \mathbf{v}^{(0)} & \mathbf{v}^{(1)} & \mathbf{v}^{(2)} & \mathbf{v}^{(3)} \\ 1 & 1 & 1 & 1 \\ 1 & j & -1 & -j \\ 1 & -1 & 1 & -1 \\ 1 & -j & -1 & j \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \end{bmatrix}$$
 Time *n*

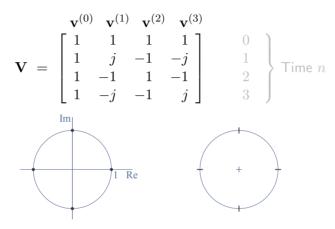




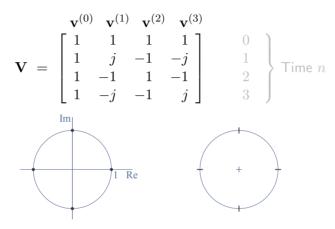
• Each column of V is a complex sinusoid $e^{j\omega n}$



- Each column of ${f V}$ is a complex sinusoid $e^{j\omega n}$
- Row index n = 0:3 represents time



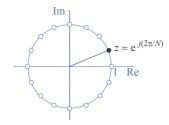
- Each column of ${f V}$ is a complex sinusoid $e^{j\omega n}$
- Row index n = 0:3 represents time
- Column index k = 0:3 corresponds to frequency:



- Each column of ${f V}$ is a complex sinusoid $e^{j\omega n}$
- Row index n = 0:3 represents time
- Column index k = 0:3 corresponds to frequency:

$$\omega_k = k \cdot \pi/2$$

The $N \times N$ Matrix \mathbf{V}

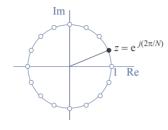


1. What is the smallest vector length N for which both

$$\omega = \frac{7\pi}{12}$$
 and $\omega' = \frac{11\pi}{28}$

are Fourier (DFT) frequencies?

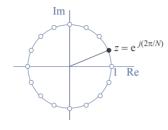
- **A**. 77
- **B**. 84
- **C**. 168
- **D**. 336



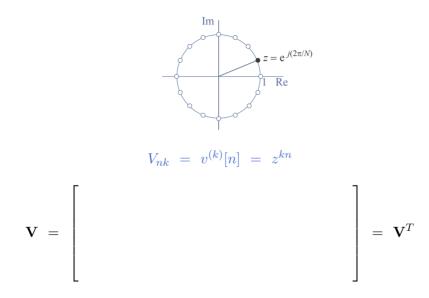
$$V_{nk} = v^{(k)}[n] = z^{kn}$$

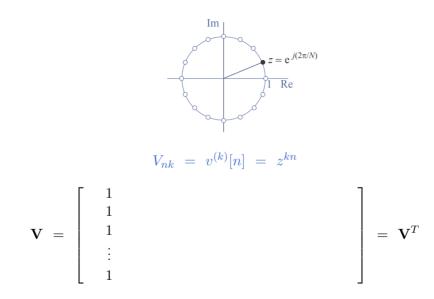
2. What is the smallest vector length N such that the $N \times N$ matrix V of Fourier sinusoids contains the entry

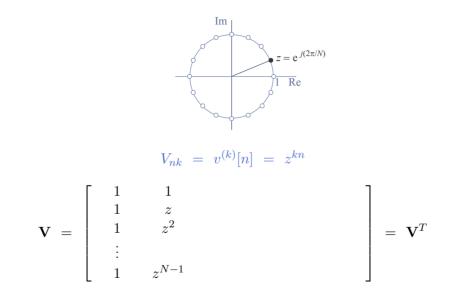
$$-\frac{\sqrt{3}}{2}+\frac{j}{2}$$
 ?

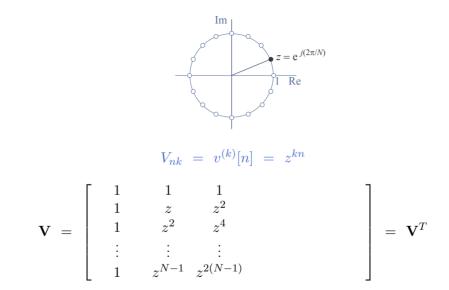


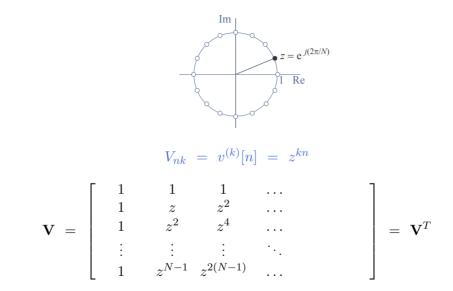
$$V_{nk} = v^{(k)}[n] = z^{kn}$$

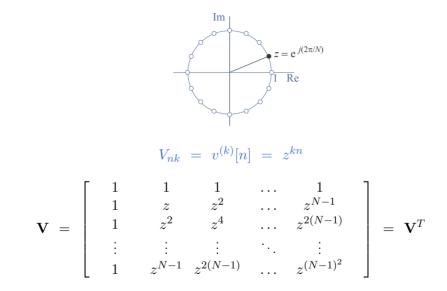


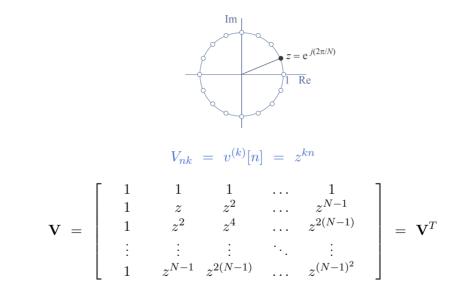




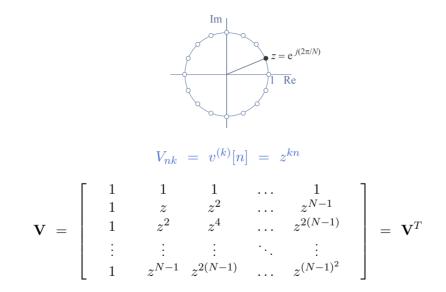




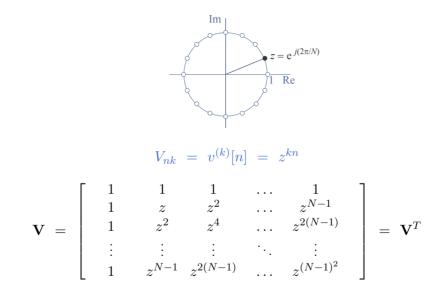




•
$$\mathbf{V}^H \mathbf{V} = N \mathbf{I}$$



• $\mathbf{V}^H \mathbf{V} = N \mathbf{I}$ (columns of \mathbf{V} are orthogonal,



• $\mathbf{V}^H \mathbf{V} = N \mathbf{I}$ (columns of \mathbf{V} are orthogonal, each with $\|\cdot\|^2 = N$)

Since ${\bf V}$ has orthogonal columns

Since V has orthogonal columns (with $\|\cdot\|^2 = N$),

Since ${\bf V}$ has orthogonal columns (with $\|\cdot\|^2=N)$, any signal vector ${\bf s}$

$$s = Vc$$

$$\mathbf{s} = \mathbf{V}\mathbf{c}$$
, where

$$\mathbf{s} = \mathbf{V}\mathbf{c}$$
, where $c_k = \frac{\langle \mathbf{v}^{(k)}, \mathbf{s} \rangle}{N}$

Since V has orthogonal columns (with $\|\cdot\|^2 = N$), any signal vector s is the sum of its projections on the columns of V:

$$\mathbf{s} = \mathbf{V}\mathbf{c}$$
, where $c_k = \frac{\langle \mathbf{v}^{(k)}, \mathbf{s} \rangle}{N}$

• Numerator $\langle \mathbf{v}^{(k)}, \mathbf{s}
angle =$

Since V has orthogonal columns (with $\|\cdot\|^2 = N$), any signal vector s is the sum of its projections on the columns of V:

$$\mathbf{s} = \mathbf{V}\mathbf{c}$$
, where $c_k = \frac{\langle \mathbf{v}^{(k)}, \mathbf{s} \rangle}{N}$

• Numerator $\langle \mathbf{v}^{(k)}, \mathbf{s}
angle \; = \; k^{ ext{th}} \; \mathsf{DFT} \; \mathsf{coefficient} \; \mathsf{of} \; \mathbf{s}$

Since V has orthogonal columns (with $\|\cdot\|^2 = N$), any signal vector s is the sum of its projections on the columns of V:

$$\mathbf{s} = \mathbf{V}\mathbf{c}$$
, where $c_k = \frac{\langle \mathbf{v}^{(k)}, \mathbf{s} \rangle}{N}$

• Numerator $\langle \mathbf{v}^{(k)}, \mathbf{s} \rangle = k^{\text{th}} \text{ DFT coefficient of } \mathbf{s} \stackrel{\text{def}}{=} S[k]$

3. If $s = \begin{bmatrix} 7 & -2 & 3 & -1 & 4 & 5 \end{bmatrix}^T$ has DFT S[0:5], then S[3] equals A. 12 B. 16 C. $1 + j(3\sqrt{3})$ D. $1 - j(3\sqrt{3})$ 4. Let $\mathbf{x} = x_{0:7}$. Which of the following entries in the DFT X is given by

$$x_0 + jx_1 - x_2 - jx_3 + x_4 + jx_5 - x_6 - jx_7$$
?

- A. X[1]
- **B**. *X*[2]
- $\mathsf{C}. \quad X[6]$
- $\mathsf{D}. \quad X[7]$

Since V has orthogonal columns (with $\|\cdot\|^2 = N$), any signal vector s is the sum of its projections on the columns of V:

$$\mathbf{s} = \mathbf{V}\mathbf{c}$$
, where $c_k = \frac{\langle \mathbf{v}^{(k)}, \mathbf{s} \rangle}{N}$

• Numerator $\langle \mathbf{v}^{(k)}, \mathbf{s} \rangle = k^{\text{th}} \text{ DFT coefficient of } \mathbf{s} \stackrel{\text{def}}{=} S[k]$

Since V has orthogonal columns (with $\|\cdot\|^2 = N$), any signal vector s is the sum of its projections on the columns of V:

$$\mathbf{s} = \mathbf{V}\mathbf{c}$$
, where $c_k = \frac{\langle \mathbf{v}^{(k)}, \mathbf{s} \rangle}{N}$

- Numerator $\langle \mathbf{v}^{(k)}, \mathbf{s}
 angle = k^{\text{th}} \text{ DFT coefficient of } \mathbf{s} \stackrel{\text{def}}{=} S[k]$
- DFT vector $\mathbf{S} = [S[0] \ S[1] \ \dots \ S[N-1]]^T$

Since V has orthogonal columns (with $\|\cdot\|^2 = N$), any signal vector s is the sum of its projections on the columns of V:

$$\mathbf{s} = \mathbf{V}\mathbf{c}$$
, where $c_k = \frac{\langle \mathbf{v}^{(k)}, \mathbf{s} \rangle}{N}$

• Numerator $\langle \mathbf{v}^{(k)}, \mathbf{s}
angle = k^{\text{th}} \text{ DFT coefficient of } \mathbf{s} \stackrel{\text{def}}{=} S[k]$

$$s = Vc$$

Since V has orthogonal columns (with $\|\cdot\|^2 = N$), any signal vector s is the sum of its projections on the columns of V:

$$\mathbf{s} = \mathbf{V}\mathbf{c}$$
, where $c_k = \frac{\langle \mathbf{v}^{(k)}, \mathbf{s} \rangle}{N}$

• Numerator $\langle \mathbf{v}^{(k)}, \mathbf{s} \rangle = k^{\text{th}} \text{ DFT coefficient of } \mathbf{s} \stackrel{\text{def}}{=} S[k]$

$$\mathbf{s} = \mathbf{V}\mathbf{c} = \frac{1}{N}\mathbf{V}\mathbf{S}$$

Since V has orthogonal columns (with $\|\cdot\|^2 = N$), any signal vector s is the sum of its projections on the columns of V:

$$\mathbf{s} = \mathbf{V}\mathbf{c}$$
, where $c_k = \frac{\langle \mathbf{v}^{(k)}, \mathbf{s} \rangle}{N}$

• Numerator $\langle \mathbf{v}^{(k)}, \mathbf{s} \rangle = k^{\text{th}} \text{ DFT coefficient of } \mathbf{s} \stackrel{\text{def}}{=} S[k]$

$$\mathbf{s} = \mathbf{V}\mathbf{c} = \frac{1}{N}\mathbf{V}\mathbf{S} \qquad \Leftrightarrow$$

Since V has orthogonal columns (with $\|\cdot\|^2 = N$), any signal vector s is the sum of its projections on the columns of V:

$$\mathbf{s} = \mathbf{V}\mathbf{c}$$
, where $c_k = \frac{\langle \mathbf{v}^{(k)}, \mathbf{s} \rangle}{N}$

• Numerator $\langle \mathbf{v}^{(k)}, \mathbf{s} \rangle = k^{\text{th}} \text{ DFT coefficient of } \mathbf{s} \stackrel{\text{def}}{=} S[k]$

$$\mathbf{s} = \mathbf{V}\mathbf{c} = \frac{1}{N}\mathbf{V}\mathbf{S} \qquad \Leftrightarrow \qquad \mathbf{S} = \mathbf{V}^{H}\mathbf{s}$$

Since V has orthogonal columns (with $\|\cdot\|^2 = N$), any signal vector s is the sum of its projections on the columns of V:

$$\mathbf{s} = \mathbf{V}\mathbf{c}$$
, where $c_k = \frac{\langle \mathbf{v}^{(k)}, \mathbf{s} \rangle}{N}$

- Numerator $\langle {f v}^{(k)},\,{f s}
 angle \ = \ k^{
 m th}$ DFT coefficient of ${f s} \ \stackrel{
 m def}{=} \ S[k]$
- DFT vector $\mathbf{S}~=~[\,S[0]~~S[1]~~\dots~~S[N-1]\,]^T$

$$\mathbf{s} = \mathbf{V}\mathbf{c} = \frac{1}{N}\mathbf{V}\mathbf{S} \qquad \Leftrightarrow \qquad \mathbf{S} = \mathbf{V}^H\mathbf{s}$$

5. The signal vector $\mathbf{x} = x[0:15]$ is given by the formula

$$x[n] = \cos(5\pi n/8), \qquad n = 0, \dots, 15$$

How many zeros does the DFT vector $\mathbf X$ contain?

- A. None
- B. One
- C. Fourteeen
- D. Fifteen

- B. X contains information about the amplitude and phase of standard sinusoidal vectors which, when summed together, produce the signal vector \mathbf{x} .
- C. If one of the entries of the DFT ${\bf X}$ is zero, then ${\bf x}$ must also contain (at least) one zero entry.
- D. If \mathbf{x} is real-valued, then so is \mathbf{X} .

- B. X contains information about the amplitude and phase of standard sinusoidal vectors which, when summed together, produce the signal vector \mathbf{x} .
- C. If one of the entries of the DFT ${\bf X}$ is zero, then ${\bf x}$ must also contain (at least) one zero entry.
- D. If \mathbf{x} is real-valued, then so is \mathbf{X} .

- B. X contains information about the amplitude and phase of standard sinusoidal vectors which, when summed together, produce the signal vector \mathbf{x} .
- C. If one of the entries of the DFT ${\bf X}$ is zero, then ${\bf x}$ must also contain (at least) one zero entry.
- D. If \mathbf{x} is real-valued, then so is \mathbf{X} .

- B. X contains information about the amplitude and phase of standard sinusoidal vectors which, when summed together, produce the signal vector \mathbf{x} .
- C. If one of the entries of the DFT ${\bf X}$ is zero, then ${\bf x}$ must also contain (at least) one zero entry.
- **D.** If \mathbf{x} is real-valued, then so is \mathbf{X} .

- B. X contains information about the amplitude and phase of standard sinusoidal vectors which, when summed together, produce the signal vector \mathbf{x} .
- C. If one of the entries of the DFT ${\bf X}$ is zero, then ${\bf x}$ must also contain (at least) one zero entry.
- D. If \mathbf{x} is real-valued, then so is \mathbf{X} .