4×4 Matrix of Fourier (DFT) Sinsoids
4×4 Matrix of Fourier (DFT) Sinsoids

$$
\mathbf{v}^{(0)} \quad \mathbf{v}^{(1)} \quad \mathbf{v}^{(2)} \quad \mathbf{v}^{(3)}
$$

4×4 Matrix of Fourier (DFT) Sinsoids

$$
\left.\mathbf{V}=\left[\begin{array}{rrrr}
\mathbf{v}^{(0)} & \mathbf{v}^{(1)} & \mathbf{v}^{(2)} & \mathbf{v}^{(3)} \\
1 & 1 & 1 & 1 \\
1 & j & -1 & -j \\
1 & -1 & 1 & -1 \\
1 & -j & -1 & j
\end{array}\right] \quad \begin{array}{l}
0 \\
1 \\
2 \\
3
\end{array}\right\} \text { Time } n
$$

4×4 Matrix of Fourier (DFT) Sinsoids

$$
\left.\mathbf{V}=\left[\begin{array}{rrrr}
\mathbf{v}^{(0)} & \mathbf{v}^{(1)} & \mathbf{v}^{(2)} & \mathbf{v}^{(3)} \\
1 & 1 & 1 & 1 \\
1 & j & -1 & -j \\
1 & -1 & 1 & -1 \\
1 & -j & -1 & j
\end{array}\right] \quad \begin{array}{l}
0 \\
1 \\
2 \\
3
\end{array}\right\} \text { Time } n
$$

4×4 Matrix of Fourier (DFT) Sinsoids

$$
\left.\mathbf{V}=\left[\begin{array}{rrrr}
\mathbf{v}^{(0)} & \mathbf{v}^{(1)} & \mathbf{v}^{(2)} & \mathbf{v}^{(3)} \\
1 & 1 & 1 & 1 \\
1 & j & -1 & -j \\
1 & -1 & 1 & -1 \\
1 & -j & -1 & j
\end{array}\right] \quad \begin{array}{l}
0 \\
1 \\
2 \\
3
\end{array}\right\} \text { Time } n
$$

- Each column of \mathbf{V} is a complex sinusoid $e^{j \omega n}$
4×4 Matrix of Fourier (DFT) Sinsoids

$$
\left.\mathbf{V}=\left[\begin{array}{rrrr}
\mathbf{v}^{(0)} & \mathbf{v}^{(1)} & \mathbf{v}^{(2)} & \mathbf{v}^{(3)} \\
1 & 1 & 1 & 1 \\
1 & j & -1 & -j \\
1 & -1 & 1 & -1 \\
1 & -j & -1 & j
\end{array}\right] \quad \begin{array}{l}
0 \\
1 \\
2 \\
3
\end{array}\right\} \text { Time } n
$$

- Each column of \mathbf{V} is a complex sinusoid $e^{j \omega n}$
- Row index $n=0: 3$ represents time
4×4 Matrix of Fourier (DFT) Sinsoids

$$
\left.\mathbf{V}=\left[\begin{array}{rrrr}
\mathbf{v}^{(0)} & \mathbf{v}^{(1)} & \mathbf{v}^{(2)} & \mathbf{v}^{(3)} \\
1 & 1 & 1 & 1 \\
1 & j & -1 & -j \\
1 & -1 & 1 & -1 \\
1 & -j & -1 & j
\end{array}\right] \quad \begin{array}{l}
0 \\
1 \\
2 \\
3
\end{array}\right\} \text { Time } n
$$

- Each column of \mathbf{V} is a complex sinusoid $e^{j \omega n}$
- Row index $n=0: 3$ represents time
- Column index $k=0: 3$ corresponds to frequency:
4×4 Matrix of Fourier (DFT) Sinsoids

$$
\left.\mathbf{V}=\left[\begin{array}{rrrr}
\mathbf{v}^{(0)} & \mathbf{v}^{(1)} & \mathbf{v}^{(2)} & \mathbf{v}^{(3)} \\
1 & 1 & 1 & 1 \\
1 & j & -1 & -j \\
1 & -1 & 1 & -1 \\
1 & -j & -1 & j
\end{array}\right] \quad \begin{array}{l}
0 \\
1 \\
2 \\
3
\end{array}\right\} \text { Time } n
$$

- Each column of \mathbf{V} is a complex sinusoid $e^{j \omega n}$
- Row index $n=0: 3$ represents time
- Column index $k=0: 3$ corresponds to frequency:

$$
\omega_{k}=k \cdot \pi / 2
$$

The $N \times N$ Matrix \mathbf{V}

The $N \times N$ Matrix \mathbf{V}

1. What is the smallest vector length N for which both

$$
\omega=\frac{7 \pi}{12} \quad \text { and } \quad \omega^{\prime}=\frac{11 \pi}{28}
$$

are Fourier (DFT) frequencies?
A. 77
B. 84
C. 168
D. 336

The $N \times N$ Matrix \mathbf{V}

$$
V_{n k}=v^{(k)}[n]=z^{k n}
$$

2. What is the smallest vector length N such that the $N \times N$ matrix \mathbf{V} of Fourier sinusoids contains the entry

$$
-\frac{\sqrt{3}}{2}+\frac{j}{2} ?
$$

A. 6
B. 8
C. 12
D. 24

The $N \times N$ Matrix \mathbf{V}

$$
V_{n k}=v^{(k)}[n]=z^{k n}
$$

The $N \times N$ Matrix \mathbf{V}

$$
V_{n k}=v^{(k)}[n]=z^{k n}
$$

$\mathbf{V}=[\square]=\mathbf{V}^{T}$

The $N \times N$ Matrix \mathbf{V}

$$
V_{n k}=v^{(k)}[n]=z^{k n}
$$

$$
\mathbf{V}=\left[\begin{array}{cc}
1 \\
1 \\
1 \\
\vdots \\
1
\end{array} \quad\right]=\mathbf{V}^{T}
$$

The $N \times N$ Matrix \mathbf{V}

$$
V_{n k}=v^{(k)}[n]=z^{k n}
$$

$$
\mathbf{V}=\left[\begin{array}{cc}
1 & 1 \\
1 & z \\
1 & z^{2} \\
\vdots & \\
1 & z^{N-1}
\end{array}\right]=\mathbf{V}^{T}
$$

The $N \times N$ Matrix \mathbf{V}

$$
V_{n k}=v^{(k)}[n]=z^{k n}
$$

$$
\mathbf{V}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & z & z^{2} \\
1 & z^{2} & z^{4} \\
\vdots & \vdots & \vdots \\
1 & z^{N-1} & z^{2(N-1)}
\end{array}\right]=\mathbf{V}^{T}
$$

The $N \times N$ Matrix \mathbf{V}

$$
V_{n k}=v^{(k)}[n]=z^{k n}
$$

$$
\mathbf{V}=\left[\begin{array}{cccc}
1 & 1 & 1 & \cdots \\
1 & z & z^{2} & \cdots \\
1 & z^{2} & z^{4} & \cdots \\
\vdots & \vdots & \vdots & \ddots \\
1 & z^{N-1} & z^{2(N-1)} & \cdots
\end{array}\right]=\mathbf{V}^{T}
$$

The $N \times N$ Matrix \mathbf{V}

$$
V_{n k}=v^{(k)}[n]=z^{k n}
$$

$$
\mathbf{V}=\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & z & z^{2} & \cdots & z^{N-1} \\
1 & z^{2} & z^{4} & \cdots & z^{2(N-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & z^{N-1} & z^{2(N-1)} & \cdots & z^{(N-1)^{2}}
\end{array}\right]=\mathbf{V}^{T}
$$

The $N \times N$ Matrix \mathbf{V}

$$
V_{n k}=v^{(k)}[n]=z^{k n}
$$

$$
\mathbf{V}=\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & z & z^{2} & \cdots & z^{N-1} \\
1 & z^{2} & z^{4} & \cdots & z^{2(N-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & z^{N-1} & z^{2(N-1)} & \cdots & z^{(N-1)^{2}}
\end{array}\right]=\mathbf{V}^{T}
$$

- $\mathbf{V}^{H} \mathbf{V}=N \mathbf{I}$

The $N \times N$ Matrix \mathbf{V}

$$
V_{n k}=v^{(k)}[n]=z^{k n}
$$

$$
\mathbf{V}=\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & z & z^{2} & \cdots & z^{N-1} \\
1 & z^{2} & z^{4} & \cdots & z^{2(N-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & z^{N-1} & z^{2(N-1)} & \cdots & z^{(N-1)^{2}}
\end{array}\right]=\mathbf{V}^{T}
$$

- $\mathbf{V}^{H} \mathbf{V}=N \mathbf{I}$ (columns of \mathbf{V} are orthogonal,

The $N \times N$ Matrix \mathbf{V}

$$
V_{n k}=v^{(k)}[n]=z^{k n}
$$

$$
\mathbf{V}=\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & z & z^{2} & \cdots & z^{N-1} \\
1 & z^{2} & z^{4} & \cdots & z^{2(N-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & z^{N-1} & z^{2(N-1)} & \cdots & z^{(N-1)^{2}}
\end{array}\right]=\mathbf{V}^{T}
$$

- $\mathbf{V}^{H} \mathbf{V}=N \mathbf{I}$ (columns of \mathbf{V} are orthogonal, each with $\|\cdot\|^{2}=N$)

The Discrete Fourier Transform

The Discrete Fourier Transform

Since \mathbf{V} has orthogonal columns

The Discrete Fourier Transform

Since \mathbf{V} has orthogonal columns (with $\|\cdot\|^{2}=N$),

The Discrete Fourier Transform

Since \mathbf{V} has orthogonal columns (with $\|\cdot\|^{2}=N$), any signal vector s

The Discrete Fourier Transform

Since \mathbf{V} has orthogonal columns (with $\|\cdot\|^{2}=N$), any signal vector \mathbf{s} is the sum of its projections on the columns of \mathbf{V} :

The Discrete Fourier Transform

Since \mathbf{V} has orthogonal columns (with $\|\cdot\|^{2}=N$), any signal vector \mathbf{s} is the sum of its projections on the columns of \mathbf{V} :

$$
\mathrm{s}=\mathrm{Vc}
$$

The Discrete Fourier Transform

Since \mathbf{V} has orthogonal columns (with $\|\cdot\|^{2}=N$), any signal vector \mathbf{s} is the sum of its projections on the columns of \mathbf{V} :

$$
\mathbf{s}=\mathbf{V c}, \quad \text { where }
$$

The Discrete Fourier Transform

Since \mathbf{V} has orthogonal columns (with $\|\cdot\|^{2}=N$), any signal vector \mathbf{s} is the sum of its projections on the columns of \mathbf{V} :

$$
\mathbf{s}=\mathbf{V c}, \quad \text { where } \quad c_{k}=\frac{\left\langle\mathbf{v}^{(k)}, \mathbf{s}\right\rangle}{N}
$$

The Discrete Fourier Transform

Since \mathbf{V} has orthogonal columns (with $\|\cdot\|^{2}=N$), any signal vector \mathbf{s} is the sum of its projections on the columns of \mathbf{V} :

$$
\mathbf{s}=\mathbf{V c}, \quad \text { where } \quad c_{k}=\frac{\left\langle\mathbf{v}^{(k)}, \mathbf{s}\right\rangle}{N}
$$

- Numerator $\left\langle\mathbf{v}^{(k)}, \mathbf{s}\right\rangle=$

The Discrete Fourier Transform

Since \mathbf{V} has orthogonal columns (with $\|\cdot\|^{2}=N$), any signal vector \mathbf{s} is the sum of its projections on the columns of \mathbf{V} :

$$
\mathbf{s}=\mathbf{V c}, \quad \text { where } \quad c_{k}=\frac{\left\langle\mathbf{v}^{(k)}, \mathbf{s}\right\rangle}{N}
$$

- Numerator $\left\langle\mathbf{v}^{(k)}, \mathbf{s}\right\rangle=k^{\text {th }}$ DFT coefficient of \mathbf{s}

The Discrete Fourier Transform

Since \mathbf{V} has orthogonal columns (with $\|\cdot\|^{2}=N$), any signal vector \mathbf{s} is the sum of its projections on the columns of \mathbf{V} :

$$
\mathbf{s}=\mathbf{V c}, \quad \text { where } \quad c_{k}=\frac{\left\langle\mathbf{v}^{(k)}, \mathbf{s}\right\rangle}{N}
$$

- Numerator $\left\langle\mathbf{v}^{(k)}, \mathbf{s}\right\rangle=k^{\text {th }}$ DFT coefficient of $\mathbf{s} \stackrel{\text { def }}{=} S[k]$

3. If $\mathbf{s}=\left[\begin{array}{llllll}7 & -2 & 3 & -1 & 4 & 5\end{array}\right]^{T}$ has DFT $S[0: 5]$, then $S[3]$ equals
A. 12
B. 16
C. $1+j(3 \sqrt{3})$
D. $1-j(3 \sqrt{3})$
4. Let $\mathbf{x}=x_{0: 7}$. Which of the following entries in the DFT \mathbf{X} is given by

$$
x_{0}+j x_{1}-x_{2}-j x_{3}+x_{4}+j x_{5}-x_{6}-j x_{7} ?
$$

A. $X[1]$
B. $X[2]$
C. $X[6]$
D. $X[7]$

The Discrete Fourier Transform

Since \mathbf{V} has orthogonal columns (with $\|\cdot\|^{2}=N$), any signal vector \mathbf{s} is the sum of its projections on the columns of \mathbf{V} :

$$
\mathbf{s}=\mathbf{V c}, \quad \text { where } \quad c_{k}=\frac{\left\langle\mathbf{v}^{(k)}, \mathbf{s}\right\rangle}{N}
$$

- Numerator $\left\langle\mathbf{v}^{(k)}, \mathbf{s}\right\rangle=k^{\text {th }}$ DFT coefficient of $\mathbf{s} \stackrel{\text { def }}{=} S[k]$

The Discrete Fourier Transform

Since \mathbf{V} has orthogonal columns (with $\|\cdot\|^{2}=N$), any signal vector \mathbf{s} is the sum of its projections on the columns of \mathbf{V} :

$$
\mathbf{s}=\mathbf{V c}, \quad \text { where } \quad c_{k}=\frac{\left\langle\mathbf{v}^{(k)}, \mathbf{s}\right\rangle}{N}
$$

- Numerator $\left\langle\mathbf{v}^{(k)}, \mathbf{s}\right\rangle=k^{\text {th }}$ DFT coefficient of $\mathbf{s} \stackrel{\text { def }}{=} S[k]$
- DFT vector $\mathbf{S}=\left[\begin{array}{llll}S[0] & S[1] & \ldots & S[N-1]\end{array}\right]^{T}$

The Discrete Fourier Transform

Since \mathbf{V} has orthogonal columns (with $\|\cdot\|^{2}=N$), any signal vector \mathbf{s} is the sum of its projections on the columns of \mathbf{V} :

$$
\mathbf{s}=\mathbf{V c}, \quad \text { where } \quad c_{k}=\frac{\left\langle\mathbf{v}^{(k)}, \mathbf{s}\right\rangle}{N}
$$

- Numerator $\left\langle\mathbf{v}^{(k)}, \mathbf{s}\right\rangle=k^{\text {th }}$ DFT coefficient of $\mathbf{s} \stackrel{\text { def }}{=} S[k]$
- DFT vector $\mathbf{S}=\left[\begin{array}{llll}S[0] & S[1] & \ldots & S[N-1]\end{array}\right]^{T}$

$$
\mathrm{s}=\mathrm{Vc}
$$

The Discrete Fourier Transform

Since \mathbf{V} has orthogonal columns (with $\|\cdot\|^{2}=N$), any signal vector \mathbf{s} is the sum of its projections on the columns of \mathbf{V} :

$$
\mathbf{s}=\mathbf{V c}, \quad \text { where } \quad c_{k}=\frac{\left\langle\mathbf{v}^{(k)}, \mathbf{s}\right\rangle}{N}
$$

- Numerator $\left\langle\mathbf{v}^{(k)}, \mathbf{s}\right\rangle=k^{\text {th }}$ DFT coefficient of $\mathbf{s} \stackrel{\text { def }}{=} S[k]$
- DFT vector $\mathbf{S}=\left[\begin{array}{llll}S[0] & S[1] & \ldots & S[N-1]\end{array}\right]^{T}$

$$
\mathbf{s}=\mathbf{V c}=\frac{1}{N} \mathbf{V S}
$$

The Discrete Fourier Transform

Since \mathbf{V} has orthogonal columns (with $\|\cdot\|^{2}=N$), any signal vector \mathbf{s} is the sum of its projections on the columns of \mathbf{V} :

$$
\mathbf{s}=\mathbf{V c}, \quad \text { where } \quad c_{k}=\frac{\left\langle\mathbf{v}^{(k)}, \mathbf{s}\right\rangle}{N}
$$

- Numerator $\left\langle\mathbf{v}^{(k)}, \mathbf{s}\right\rangle=k^{\text {th }}$ DFT coefficient of $\mathbf{s} \stackrel{\text { def }}{=} S[k]$
- DFT vector $\mathbf{S}=\left[\begin{array}{llll}S[0] & S[1] & \ldots & S[N-1]\end{array}\right]^{T}$

$$
\mathbf{s}=\mathbf{V c}=\frac{1}{N} \mathbf{V S} \quad \Leftrightarrow
$$

The Discrete Fourier Transform

Since \mathbf{V} has orthogonal columns (with $\|\cdot\|^{2}=N$), any signal vector \mathbf{s} is the sum of its projections on the columns of \mathbf{V} :

$$
\mathbf{s}=\mathbf{V c}, \quad \text { where } \quad c_{k}=\frac{\left\langle\mathbf{v}^{(k)}, \mathbf{s}\right\rangle}{N}
$$

- Numerator $\left\langle\mathbf{v}^{(k)}, \mathbf{s}\right\rangle=k^{\text {th }}$ DFT coefficient of $\mathbf{s} \stackrel{\text { def }}{=} S[k]$
- DFT vector $\mathbf{S}=\left[\begin{array}{llll}S[0] & S[1] & \ldots & S[N-1]\end{array}\right]^{T}$

$$
\mathbf{s}=\mathbf{V} \mathbf{c}=\frac{1}{N} \mathbf{V} \mathbf{S} \quad \Leftrightarrow \quad \mathbf{S}=\mathbf{V}^{H} \mathbf{s}
$$

The Discrete Fourier Transform

Since \mathbf{V} has orthogonal columns (with $\|\cdot\|^{2}=N$), any signal vector \mathbf{s} is the sum of its projections on the columns of \mathbf{V} :

$$
\mathbf{s}=\mathbf{V c}, \quad \text { where } \quad c_{k}=\frac{\left\langle\mathbf{v}^{(k)}, \mathbf{s}\right\rangle}{N}
$$

- Numerator $\left\langle\mathbf{v}^{(k)}, \mathbf{s}\right\rangle=k^{\text {th }}$ DFT coefficient of $\mathbf{s} \stackrel{\text { def }}{=} S[k]$
- DFT vector $\mathbf{S}=\left[\begin{array}{llll}S[0] & S[1] & \ldots & S[N-1]\end{array}\right]^{T}$

$$
\mathbf{s}=\mathbf{V} \mathbf{c}=\frac{1}{N} \mathbf{V S} \quad \Leftrightarrow \quad \mathbf{S}=\mathbf{V}^{H} \mathbf{s}
$$

5. The signal vector $\mathbf{x}=x[0: 15]$ is given by the formula

$$
x[n]=\cos (5 \pi n / 8), \quad n=0, \ldots, 15
$$

How many zeros does the DFT vector \mathbf{X} contain?
A. None
B. One
C. Fourteeen
D. Fifteen
6. Which of the following statements are true about the DFT X of a signal vector x ?
A. X and X are vectors of the same length.
B. X contains information about the amplitude and phase of standard sinusoidal vectors which, when summed together, produce the signal vector x .
C. If one of the entries of the DFT \mathbf{X} is zero, then \mathbf{x} must also contain (at least) one zero entry.
D. If x is real-valued, then so is \mathbf{X}.
6. Which of the following statements are true about the DFT X of a signal vector x ?
A. \mathbf{x} and \mathbf{X} are vectors of the same length.
B. X contains information about the amplitude and phase of standard sinusoidal vectors which, when summed together, produce the signal vector x .
C. If one of the entries of the DFT \mathbf{X} is zero, then \mathbf{x} must also contain (at least) one zero entry.
D. If x is real-valued, then so is \mathbf{X}.
6. Which of the following statements are true about the DFT X of a signal vector x ?
A. \mathbf{x} and \mathbf{X} are vectors of the same length.
B. \mathbf{X} contains information about the amplitude and phase of standard sinusoidal vectors which, when summed together, produce the signal vector \mathbf{x}.
C. If one of the entries of the DFT \mathbf{X} is zero, then \mathbf{x} must also contain (at least) one zero entry.
D. If x is real-valued, then so is \mathbf{X}.
6. Which of the following statements are true about the DFT X of a signal vector x ?
A. \mathbf{x} and \mathbf{X} are vectors of the same length.
B. \mathbf{X} contains information about the amplitude and phase of standard sinusoidal vectors which, when summed together, produce the signal vector \mathbf{x}.
C. If one of the entries of the DFT \mathbf{X} is zero, then \mathbf{x} must also contain (at least) one zero entry.
D. If x is real-valued, then so is \mathbf{X}.
6. Which of the following statements are true about the DFT X of a signal vector x ?
A. \mathbf{x} and \mathbf{X} are vectors of the same length.
B. \mathbf{X} contains information about the amplitude and phase of standard sinusoidal vectors which, when summed together, produce the signal vector \mathbf{x}.
C. If one of the entries of the DFT \mathbf{X} is zero, then \mathbf{x} must also contain (at least) one zero entry.
D. If \mathbf{x} is real-valued, then so is \mathbf{X}.

