$$\langle \mathbf{v}, \mathbf{u} \rangle \stackrel{\mathrm{def}}{=}$$

$$\langle \mathbf{v}, \mathbf{u} \rangle \stackrel{\text{def}}{=} \sum_{i=1}^m v_i^* u_i$$

$$\langle \mathbf{v}, \mathbf{u} \rangle \stackrel{\text{def}}{=} \sum_{i=1}^m v_i^* u_i = (\mathbf{v}^*)^T \mathbf{u}$$

$$\langle \mathbf{v}, \mathbf{u} \rangle \stackrel{\text{def}}{=} \sum_{i=1}^{m} v_i^* u_i = (\mathbf{v}^*)^T \mathbf{u} = \mathbf{v}^H \mathbf{u}$$

For \mathbf{v} and \mathbf{u} in \mathbb{C}^m ,

$$\langle \mathbf{v}, \mathbf{u} \rangle \stackrel{\text{def}}{=} \sum_{i=1}^{m} v_i^* u_i = (\mathbf{v}^*)^T \mathbf{u} = \mathbf{v}^H \mathbf{u}$$

For \mathbf{v} and \mathbf{u} in \mathbb{C}^m ,

$$\langle \mathbf{v}, \mathbf{u} \rangle \stackrel{\text{def}}{=} \sum_{i=1}^{m} v_i^* u_i = (\mathbf{v}^*)^T \mathbf{u} = \mathbf{v}^H \mathbf{u}$$

$$\|\mathbf{v}\|^2 =$$

For \mathbf{v} and \mathbf{u} in \mathbb{C}^m ,

$$\langle \mathbf{v}, \mathbf{u} \rangle \stackrel{\text{def}}{=} \sum_{i=1}^{m} v_i^* u_i = (\mathbf{v}^*)^T \mathbf{u} = \mathbf{v}^H \mathbf{u}$$

$$\|\mathbf{v}\|^2 = \langle \mathbf{v}, \mathbf{v} \rangle$$

For \mathbf{v} and \mathbf{u} in \mathbb{C}^m ,

$$\langle \mathbf{v}, \mathbf{u} \rangle \stackrel{\text{def}}{=} \sum_{i=1}^{m} v_i^* u_i = (\mathbf{v}^*)^T \mathbf{u} = \mathbf{v}^H \mathbf{u}$$

$$\|\mathbf{v}\|^2 = \langle \mathbf{v}, \mathbf{v} \rangle = \sum_{i=1}^m v_i^* v_i$$

For \mathbf{v} and \mathbf{u} in \mathbb{C}^m ,

$$\langle \mathbf{v}, \mathbf{u} \rangle \stackrel{\text{def}}{=} \sum_{i=1}^{m} v_i^* u_i = (\mathbf{v}^*)^T \mathbf{u} = \mathbf{v}^H \mathbf{u}$$

$$\|\mathbf{v}\|^2 = \langle \mathbf{v}, \mathbf{v} \rangle = \sum_{i=1}^m v_i^* v_i = \sum_{i=1}^m |v_i|^2$$

For \mathbf{v} and \mathbf{u} in \mathbb{C}^m ,

$$\langle \mathbf{v}, \mathbf{u} \rangle \stackrel{\text{def}}{=} \sum_{i=1}^{m} v_i^* u_i = (\mathbf{v}^*)^T \mathbf{u} = \mathbf{v}^H \mathbf{u}$$

(*H*: conjugate transpose, or Hermitian)

$$\|\mathbf{v}\|^2 = \langle \mathbf{v}, \mathbf{v} \rangle = \sum_{i=1}^m v_i^* v_i = \sum_{i=1}^m |v_i|^2$$

• $\langle \mathbf{v}, \mathbf{u} + \tilde{\mathbf{u}} \rangle$

For \mathbf{v} and \mathbf{u} in \mathbb{C}^m ,

$$\langle \mathbf{v}, \mathbf{u} \rangle \stackrel{\text{def}}{=} \sum_{i=1}^{m} v_i^* u_i = (\mathbf{v}^*)^T \mathbf{u} = \mathbf{v}^H \mathbf{u}$$

$$\|\mathbf{v}\|^2 = \langle \mathbf{v}, \mathbf{v} \rangle = \sum_{i=1}^m v_i^* v_i = \sum_{i=1}^m |v_i|^2$$

•
$$\langle \mathbf{v}, \mathbf{u} + \tilde{\mathbf{u}} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle + \langle \mathbf{v}, \tilde{\mathbf{u}} \rangle$$

For \mathbf{v} and \mathbf{u} in \mathbb{C}^m ,

$$\langle \mathbf{v}, \mathbf{u} \rangle \stackrel{\text{def}}{=} \sum_{i=1}^{m} v_i^* u_i = (\mathbf{v}^*)^T \mathbf{u} = \mathbf{v}^H \mathbf{u}$$

(*H*: conjugate transpose, or Hermitian)

$$\|\mathbf{v}\|^2 = \langle \mathbf{v}, \mathbf{v} \rangle = \sum_{i=1}^m v_i^* v_i = \sum_{i=1}^m |v_i|^2$$

•
$$\langle \mathbf{v}, \mathbf{u} + \tilde{\mathbf{u}} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle + \langle \mathbf{v}, \tilde{\mathbf{u}} \rangle$$

• $\langle \alpha \mathbf{v}, \beta \mathbf{u} \rangle$

For \mathbf{v} and \mathbf{u} in \mathbb{C}^m ,

$$\langle \mathbf{v}, \mathbf{u} \rangle \stackrel{\text{def}}{=} \sum_{i=1}^{m} v_i^* u_i = (\mathbf{v}^*)^T \mathbf{u} = \mathbf{v}^H \mathbf{u}$$

$$\|\mathbf{v}\|^2 = \langle \mathbf{v}, \mathbf{v} \rangle = \sum_{i=1}^m v_i^* v_i = \sum_{i=1}^m |v_i|^2$$

•
$$\langle \mathbf{v}, \mathbf{u} + \tilde{\mathbf{u}} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle + \langle \mathbf{v}, \tilde{\mathbf{u}} \rangle$$

•
$$\langle \alpha \mathbf{v}, \beta \mathbf{u} \rangle = \alpha^* \beta \langle \mathbf{v}, \mathbf{u} \rangle$$

For \mathbf{v} and \mathbf{u} in \mathbb{C}^m ,

$$\langle \mathbf{v}, \mathbf{u} \rangle \stackrel{\text{def}}{=} \sum_{i=1}^{m} v_i^* u_i = (\mathbf{v}^*)^T \mathbf{u} = \mathbf{v}^H \mathbf{u}$$

(*H*: conjugate transpose, or Hermitian)

$$\|\mathbf{v}\|^2 = \langle \mathbf{v}, \mathbf{v} \rangle = \sum_{i=1}^m v_i^* v_i = \sum_{i=1}^m |v_i|^2$$

•
$$\langle \mathbf{v}, \mathbf{u} + \tilde{\mathbf{u}} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle + \langle \mathbf{v}, \tilde{\mathbf{u}} \rangle$$

•
$$\langle \alpha \mathbf{v}, \beta \mathbf{u} \rangle = \alpha^* \beta \langle \mathbf{v}, \mathbf{u} \rangle$$

• $\langle \mathbf{u}, \mathbf{v} \rangle$

For \mathbf{v} and \mathbf{u} in \mathbb{C}^m ,

$$\langle \mathbf{v}, \mathbf{u} \rangle \stackrel{\text{def}}{=} \sum_{i=1}^{m} v_i^* u_i = (\mathbf{v}^*)^T \mathbf{u} = \mathbf{v}^H \mathbf{u}$$

$$\|\mathbf{v}\|^2 = \langle \mathbf{v}, \mathbf{v} \rangle = \sum_{i=1}^m v_i^* v_i = \sum_{i=1}^m |v_i|^2$$

•
$$\langle \mathbf{v}, \mathbf{u} + \tilde{\mathbf{u}} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle + \langle \mathbf{v}, \tilde{\mathbf{u}} \rangle$$

•
$$\langle \alpha \mathbf{v}, \beta \mathbf{u} \rangle = \alpha^* \beta \langle \mathbf{v}, \mathbf{u} \rangle$$

•
$$\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle^*$$

1. If

$$\mathbf{u} = \begin{bmatrix} 5 & j & 1-j \end{bmatrix}^T$$
 and $\mathbf{v} = \begin{bmatrix} 1 & 2+j & 3 \end{bmatrix}^T$,

then the inner product $\langle \mathbf{u},\,\mathbf{v}\rangle$ equals

- **A**. 7 + j
- **B**. 7 j
- **C**. 9 + j

D. 9 – j

2. If $\mathbf{u} = \begin{bmatrix} 5 & j & 1-j \end{bmatrix}^T$ and $\mathbf{v} = \begin{bmatrix} 1 & 2+j & 3 \end{bmatrix}^T$, then $\|\mathbf{u} + \mathbf{v}\|^2$ equals A. 43 B. 51

C. 61

D. 197

3. Vectors \mathbf{u} , \mathbf{v} and \mathbf{w} are mutually orthogonal, each having norm equal to 2. If

$$\mathbf{x} = \mathbf{u} + 2j\mathbf{v} - 3\mathbf{w}$$

$$\mathbf{y} = (1+j)\mathbf{u} - \mathbf{v} + \mathbf{w} ,$$

then $\langle \mathbf{x},\,\mathbf{y}\rangle$ equals

- **A**. -2 + 3j
- **B**. -2 j
- **C**. -8 + 12j
- **D**. -8 4j

• As in the real-valued case,

• As in the real-valued case,

 $\mathbf{v} \bot \mathbf{u} \quad \Leftrightarrow \quad$

• As in the real-valued case,

$$\mathbf{v} \perp \mathbf{u} \quad \Leftrightarrow \quad \langle \mathbf{v}, \mathbf{u} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle = 0$$

• As in the real-valued case,

$$\mathbf{v} \perp \mathbf{u} \quad \Leftrightarrow \quad \langle \mathbf{v}, \mathbf{u} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle = 0$$

• Projection of **u** onto **v**:

• As in the real-valued case,

$$\mathbf{v} \perp \mathbf{u} \quad \Leftrightarrow \quad \langle \mathbf{v}, \mathbf{u} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle = 0$$

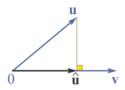
• Projection of \mathbf{u} onto \mathbf{v} : vector $\hat{\mathbf{u}} = c\mathbf{v}$

• As in the real-valued case,

$$\mathbf{v} \perp \mathbf{u} \quad \Leftrightarrow \quad \langle \mathbf{v}, \mathbf{u} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle = 0$$

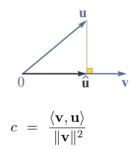
• As in the real-valued case,

$$\mathbf{v} \perp \mathbf{u} \quad \Leftrightarrow \quad \langle \mathbf{v}, \mathbf{u} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle = 0$$



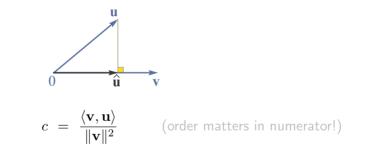
• As in the real-valued case,

$$\mathbf{v} \perp \mathbf{u} \quad \Leftrightarrow \quad \langle \mathbf{v}, \mathbf{u} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle = 0$$



• As in the real-valued case,

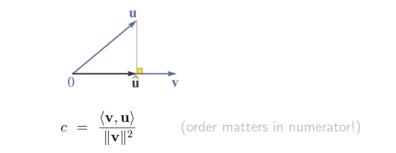
$$\mathbf{v} \perp \mathbf{u} \quad \Leftrightarrow \quad \langle \mathbf{v}, \mathbf{u} \rangle \; = \; \langle \mathbf{u}, \mathbf{v} \rangle \; = \; 0$$



• As in the real-valued case,

$$\mathbf{v} \perp \mathbf{u} \quad \Leftrightarrow \quad \langle \mathbf{v}, \mathbf{u} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle = 0$$

• Projection of \mathbf{u} onto \mathbf{v} : vector $\hat{\mathbf{u}} = c\mathbf{v}$ such that $\mathbf{u} - \hat{\mathbf{u}} \perp \mathbf{v}$

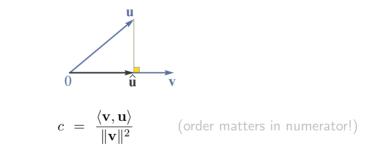


• If $\mathbf{V} \in \mathbb{C}^{m imes m}$ has orthogonal columns,

• As in the real-valued case,

$$\mathbf{v} \perp \mathbf{u} \quad \Leftrightarrow \quad \langle \mathbf{v}, \mathbf{u} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle = 0$$

• Projection of \mathbf{u} onto \mathbf{v} : vector $\hat{\mathbf{u}} = c\mathbf{v}$ such that $\mathbf{u} - \hat{\mathbf{u}} \perp \mathbf{v}$



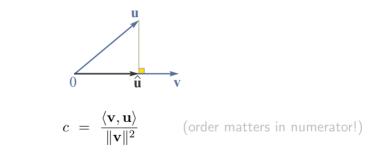
• If $\mathbf{V} \in \mathbb{C}^{m imes m}$ has orthogonal columns, then any $\mathbf{s} \in \mathbb{C}^m$ can be written as

$$\mathbf{s}~=~\mathbf{V}\mathbf{c}$$

• As in the real-valued case,

$$\mathbf{v} \perp \mathbf{u} \quad \Leftrightarrow \quad \langle \mathbf{v}, \mathbf{u} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle = 0$$

• Projection of \mathbf{u} onto \mathbf{v} : vector $\hat{\mathbf{u}} = c\mathbf{v}$ such that $\mathbf{u} - \hat{\mathbf{u}} \perp \mathbf{v}$



• If $\mathbf{V} \in \mathbb{C}^{m imes m}$ has orthogonal columns, then any $\mathbf{s} \in \mathbb{C}^m$ can be written as

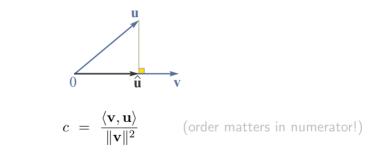
$$\mathbf{s}~=~\mathbf{V}\mathbf{c}$$

where each c_k

• As in the real-valued case,

$$\mathbf{v} \perp \mathbf{u} \quad \Leftrightarrow \quad \langle \mathbf{v}, \mathbf{u} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle = 0$$

• Projection of \mathbf{u} onto \mathbf{v} : vector $\hat{\mathbf{u}} = c\mathbf{v}$ such that $\mathbf{u} - \hat{\mathbf{u}} \perp \mathbf{v}$



• If $\mathbf{V} \in \mathbb{C}^{m imes m}$ has orthogonal columns, then any $\mathbf{s} \in \mathbb{C}^m$ can be written as

 $\mathbf{s}~=~\mathbf{V}\mathbf{c}$

where each c_k = projection coefficient of s onto the k^{th} column of V.

A Special Orthogonal Matrix

A Special Orthogonal Matrix

 $v^{(0)} v^{(1)} v^{(2)} v^{(3)}$

A Special Orthogonal Matrix

$$\mathbf{V} = \begin{bmatrix} \mathbf{v}^{(0)} & \mathbf{v}^{(1)} & \mathbf{v}^{(2)} & \mathbf{v}^{(3)} \\ 1 & 1 & 1 & 1 \\ 1 & j & -1 & -j \\ 1 & -1 & 1 & -1 \\ 1 & -j & -1 & j \end{bmatrix}$$

$$\mathbf{V} = \begin{bmatrix} \mathbf{v}^{(0)} & \mathbf{v}^{(1)} & \mathbf{v}^{(2)} & \mathbf{v}^{(3)} \\ 1 & 1 & 1 & 1 \\ 1 & j & -1 & -j \\ 1 & -1 & 1 & -1 \\ 1 & -j & -1 & j \end{bmatrix}$$

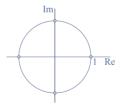
• k^{th} column $\mathbf{v}^{(k)}$:

$$\mathbf{V} = \begin{bmatrix} \mathbf{v}^{(0)} & \mathbf{v}^{(1)} & \mathbf{v}^{(2)} & \mathbf{v}^{(3)} \\ 1 & 1 & 1 & 1 \\ 1 & j & -1 & -j \\ 1 & -1 & 1 & -1 \\ 1 & -j & -1 & j \end{bmatrix}$$

• $k^{
m th}$ column ${f v}^{(k)}$: complex sinusoid of frequency $\omega = k\cdot \pi/2$

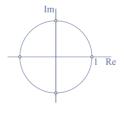
$$\mathbf{V} = \begin{bmatrix} \mathbf{v}^{(0)} & \mathbf{v}^{(1)} & \mathbf{v}^{(2)} & \mathbf{v}^{(3)} \\ 1 & 1 & 1 & 1 \\ 1 & j & -1 & -j \\ 1 & -1 & 1 & -1 \\ 1 & -j & -1 & j \end{bmatrix}$$

• $k^{\rm th}$ column ${\bf v}^{(k)}$: complex sinusoid of frequency $\,\omega\,=\,k\cdot\pi/2$



$$\mathbf{V} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & j & -1 & -j \\ 1 & -1 & 1 & -1 \\ 1 & -j & -1 & j \end{bmatrix}$$

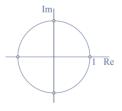
• $k^{\rm th}$ column ${\bf v}^{(k)}$: complex sinusoid of frequency $\,\omega\,=\,k\cdot\pi/2$



•
$$\mathbf{V}^T = \mathbf{V}$$

$$\mathbf{V} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & j & -1 & -j \\ 1 & -1 & 1 & -1 \\ 1 & -j & -1 & j \end{bmatrix}$$

• $k^{\rm th}$ column ${\bf v}^{(k)}$: complex sinusoid of frequency $\,\omega\,=\,k\cdot\pi/2$

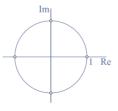


•
$$\mathbf{V}^T = \mathbf{V}$$

•
$$\mathbf{V}^H \mathbf{V} = 4\mathbf{I}$$

$$\mathbf{V} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & j & -1 & -j \\ 1 & -1 & 1 & -1 \\ 1 & -j & -1 & j \end{bmatrix}$$

• $k^{\rm th}$ column ${\bf v}^{(k)}$: complex sinusoid of frequency $\,\omega\,=\,k\cdot\pi/2$



•
$$\mathbf{V}^T = \mathbf{V}$$

• $\mathbf{V}^H \mathbf{V} = 4\mathbf{I}$ (columns are orthogonal, each has norm = 2)

4. If
$$\begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & j & -1 & -j \\
1 & -1 & 1 & -1 \\
1 & -j & -1 & j
\end{bmatrix}
\begin{bmatrix}
c_0 \\
c_1 \\
c_2 \\
c_3
\end{bmatrix} =
\begin{bmatrix}
s_0 \\
s_1 \\
s_2 \\
s_3
\end{bmatrix},$$

then $4 \cdot c_3$ equals

A.
$$s_0 + s_1 + s_2 + s_3$$

B.
$$s_0 + js_1 - s_2 - js_3$$

C.
$$s_0 - s_1 + s_2 - s_3$$

D.
$$s_0 - js_1 - s_2 + js_3$$

If the $m \times m$ matrix V is invertible,

If the $m \times m$ matrix ${f V}$ is invertible, the equation

 $\mathbf{Vc} \;=\; \mathbf{s}$

If the $m \times m$ matrix ${f V}$ is invertible, the equation

 $\mathbf{V}\mathbf{c}~=~\mathbf{s}$

has a unique solution \mathbf{c} for every $\mathbf{s} \in \mathbb{C}^m$.

If the $m \times m$ matrix ${f V}$ is invertible, the equation

 $\mathbf{Vc} = \mathbf{s}$

has a unique solution \mathbf{c} for every $\mathbf{s} \in \mathbb{C}^m$. (Exact representation of \mathbf{s} using \mathbf{V})

If the $m \times m$ matrix ${f V}$ is invertible, the equation

 $\mathbf{Vc} = \mathbf{s}$

has a unique solution \mathbf{c} for every $\mathbf{s} \in \mathbb{C}^m$. (Exact representation of \mathbf{s} using \mathbf{V})

m-n>0 columns of V deleted \Rightarrow

If the $m \times m$ matrix ${f V}$ is invertible, the equation

 $\mathbf{Vc} \;=\; \mathbf{s}$

has a unique solution \mathbf{c} for every $\mathbf{s} \in \mathbb{C}^m$. (Exact representation of \mathbf{s} using \mathbf{V})

m-n>0 columns of V deleted \Rightarrow no longer possible to express every $\mathbf{s}\in\mathbb{C}^m$

If the $m \times m$ matrix ${f V}$ is invertible, the equation

 $\mathbf{Vc} \ = \ \mathbf{s}$

has a unique solution \mathbf{c} for every $\mathbf{s} \in \mathbb{C}^m$. (Exact representation of \mathbf{s} using \mathbf{V})

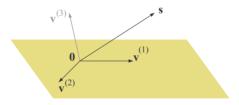
m-n > 0 columns of V deleted \Rightarrow no longer possible to express every $\mathbf{s} \in \mathbb{C}^m$ as a linear combination Vc of the remaining columns $\mathbf{v}^{(1)}, \ldots, \mathbf{v}^{(n)}$

If the $m \times m$ matrix ${f V}$ is invertible, the equation

 $\mathbf{Vc} = \mathbf{s}$

has a unique solution \mathbf{c} for every $\mathbf{s} \in \mathbb{C}^m$. (Exact representation of \mathbf{s} using \mathbf{V})

m-n > 0 columns of V deleted \Rightarrow no longer possible to express every $\mathbf{s} \in \mathbb{C}^m$ as a linear combination Vc of the remaining columns $\mathbf{v}^{(1)}, \ldots, \mathbf{v}^{(n)}$

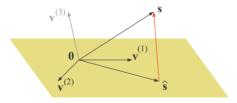


If the $m \times m$ matrix ${f V}$ is invertible, the equation

 $\mathbf{Vc} = \mathbf{s}$

has a unique solution \mathbf{c} for every $\mathbf{s} \in \mathbb{C}^m$. (Exact representation of \mathbf{s} using \mathbf{V})

m-n > 0 columns of V deleted \Rightarrow no longer possible to express every $\mathbf{s} \in \mathbb{C}^m$ as a linear combination Vc of the remaining columns $\mathbf{v}^{(1)}, \ldots, \mathbf{v}^{(n)}$

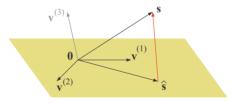


If the $m \times m$ matrix ${f V}$ is invertible, the equation

 $\mathbf{Vc} = \mathbf{s}$

has a unique solution \mathbf{c} for every $\mathbf{s} \in \mathbb{C}^m$. (Exact representation of \mathbf{s} using \mathbf{V})

m-n > 0 columns of V deleted \Rightarrow no longer possible to express every $\mathbf{s} \in \mathbb{C}^m$ as a linear combination Vc of the remaining columns $\mathbf{v}^{(1)}, \ldots, \mathbf{v}^{(n)}$



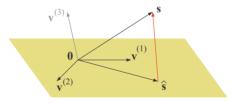
Problem: Approximate s

If the $m \times m$ matrix ${f V}$ is invertible, the equation

 $\mathbf{Vc} = \mathbf{s}$

has a unique solution \mathbf{c} for every $\mathbf{s} \in \mathbb{C}^m$. (Exact representation of \mathbf{s} using \mathbf{V})

m-n > 0 columns of V deleted \Rightarrow no longer possible to express every $\mathbf{s} \in \mathbb{C}^m$ as a linear combination Vc of the remaining columns $\mathbf{v}^{(1)}, \ldots, \mathbf{v}^{(n)}$



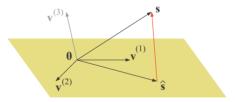
Problem: Approximate ${\bf s}$ by ${\bf \hat{s}}\,=\,{\bf Vc}$

If the $m \times m$ matrix ${f V}$ is invertible, the equation

 $\mathbf{Vc} = \mathbf{s}$

has a unique solution \mathbf{c} for every $\mathbf{s} \in \mathbb{C}^m$. (Exact representation of \mathbf{s} using \mathbf{V})

m-n > 0 columns of V deleted \Rightarrow no longer possible to express every $\mathbf{s} \in \mathbb{C}^m$ as a linear combination Vc of the remaining columns $\mathbf{v}^{(1)}, \ldots, \mathbf{v}^{(n)}$



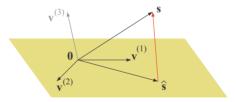
Problem: Approximate s by $\hat{s} = Vc$ so as to minimize the error vector norm $\|s - \hat{s}\|$.

If the $m \times m$ matrix ${f V}$ is invertible, the equation

 $\mathbf{Vc} = \mathbf{s}$

has a unique solution \mathbf{c} for every $\mathbf{s} \in \mathbb{C}^m$. (Exact representation of \mathbf{s} using \mathbf{V})

m-n > 0 columns of V deleted \Rightarrow no longer possible to express every $\mathbf{s} \in \mathbb{C}^m$ as a linear combination Vc of the remaining columns $\mathbf{v}^{(1)}, \ldots, \mathbf{v}^{(n)}$



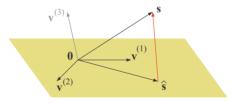
Problem: Approximate s by $\hat{s} = Vc$ so as to minimize the error vector norm $\|s - \hat{s}\|$. Solution:

If the $m \times m$ matrix ${f V}$ is invertible, the equation

 $\mathbf{Vc} = \mathbf{s}$

has a unique solution \mathbf{c} for every $\mathbf{s} \in \mathbb{C}^m$. (Exact representation of \mathbf{s} using \mathbf{V})

m-n > 0 columns of V deleted \Rightarrow no longer possible to express every $\mathbf{s} \in \mathbb{C}^m$ as a linear combination Vc of the remaining columns $\mathbf{v}^{(1)}, \ldots, \mathbf{v}^{(n)}$



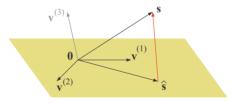
Problem: Approximate s by $\hat{s} = Vc$ so as to minimize the error vector norm $||s - \hat{s}||$. Solution: \hat{s} is the orthogonal projection of s onto

If the $m \times m$ matrix ${f V}$ is invertible, the equation

 $\mathbf{Vc} = \mathbf{s}$

has a unique solution \mathbf{c} for every $\mathbf{s} \in \mathbb{C}^m$. (Exact representation of \mathbf{s} using \mathbf{V})

m-n > 0 columns of V deleted \Rightarrow no longer possible to express every $\mathbf{s} \in \mathbb{C}^m$ as a linear combination Vc of the remaining columns $\mathbf{v}^{(1)}, \ldots, \mathbf{v}^{(n)}$

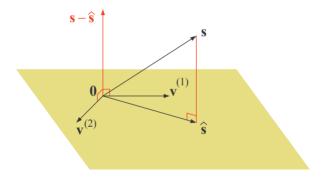


Problem: Approximate s by $\hat{s} = Vc$ so as to minimize the error vector norm $\|s - \hat{s}\|$.

Solution: \hat{s} is the orthogonal projection of s onto _____, defined by

 $\mathbf{s} - \mathbf{\hat{s}} \perp \mathbf{v}^{(1)}, \dots, \mathbf{v}^{(n)}$

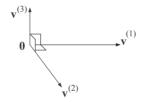
Linear Least Squares Approximation \equiv Orthogonal Projection



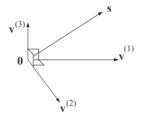
$$\mathbf{s} - \mathbf{\hat{s}} \perp \mathbf{v}^{(1)}, \dots, \mathbf{v}^{(n)}$$

Let V be square $(m \times m)$ with orthogonal columns.

Let ${\bf V}$ be square $(m\times m)$ with orthogonal columns.

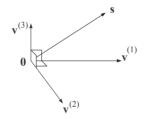


Let $\mathbf V$ be square $(m\times m)$ with orthogonal columns. Then any $\mathbf s\in \mathbb R^m$



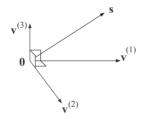
Let ${\bf V}$ be square $(m\times m)$ with orthogonal columns. Then any ${\bf s}\in \mathbb{R}^m$ can be represented as

 $\mathbf{s}~=~\mathbf{V}\mathbf{c}$

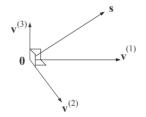


Let ${\bf V}$ be square $(m\times m)$ with orthogonal columns. Then any ${\bf s}\in \mathbb{R}^m$ can be represented as

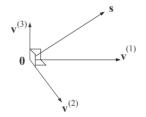
 $\mathbf{s} = \mathbf{V}\mathbf{c}$, where



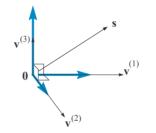
$$\mathbf{s} = \mathbf{V}\mathbf{c}$$
, where $c_k = \langle \mathbf{v}^{(k)}, \mathbf{s} \rangle / \|\mathbf{v}^{(k)}\|^2$



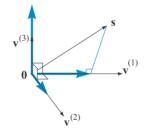
$$\mathbf{s} = \mathbf{V}\mathbf{c}$$
, where $(\forall k) \ c_k = \langle \mathbf{v}^{(k)}, \mathbf{s} \rangle / \|\mathbf{v}^{(k)}\|^2$



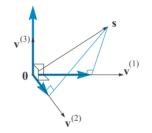
$$\mathbf{s} = \mathbf{V}\mathbf{c}$$
, where $(\forall k) \ c_k = \langle \mathbf{v}^{(k)}, \mathbf{s} \rangle / \|\mathbf{v}^{(k)}\|^2$



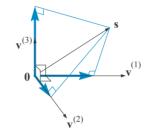
$$\mathbf{s} = \mathbf{V}\mathbf{c}$$
, where $(\forall k) \ c_k = \langle \mathbf{v}^{(k)}, \mathbf{s} \rangle / \|\mathbf{v}^{(k)}\|^2$



$$\mathbf{s} = \mathbf{V}\mathbf{c}$$
, where $(\forall k) \ c_k = \langle \mathbf{v}^{(k)}, \mathbf{s} \rangle / \|\mathbf{v}^{(k)}\|^2$

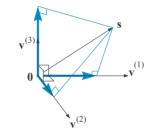


$$\mathbf{s} = \mathbf{V}\mathbf{c}$$
, where $(\forall k) \ c_k = \langle \mathbf{v}^{(k)}, \mathbf{s} \rangle / \|\mathbf{v}^{(k)}\|^2$



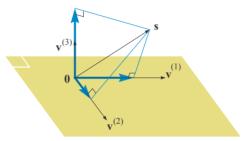
Let ${\bf V}$ be square $(m\times m)$ with orthogonal columns. Then any ${\bf s}\in \mathbb{R}^m$ can be represented as

 $\mathbf{s} = \mathbf{V}\mathbf{c}$, where $(\forall k) c_k = \langle \mathbf{v}^{(k)}, \mathbf{s} \rangle / \|\mathbf{v}^{(k)}\|^2$



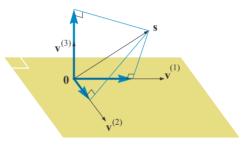
Let ${\bf V}$ be square $(m\times m)$ with orthogonal columns. Then any ${\bf s}\in \mathbb{R}^m$ can be represented as

 $\mathbf{s} = \mathbf{V}\mathbf{c}$, where $(\forall k) \ c_k = \langle \mathbf{v}^{(k)}, \mathbf{s} \rangle / \|\mathbf{v}^{(k)}\|^2$



Let V be square $(m \times m)$ with orthogonal columns. Then any $\mathbf{s} \in \mathbb{R}^m$ can be represented as

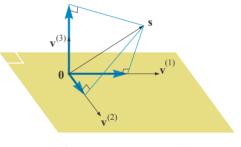
 $\mathbf{s} = \mathbf{V}\mathbf{c}$, where $(\forall k) \ c_k = \langle \mathbf{v}^{(k)}, \mathbf{s} \rangle / \|\mathbf{v}^{(k)}\|^2$



$$\mathbf{s} = \sum_{k=1}^{n} c_k \mathbf{v}^{(k)} + \sum_{k=n+1}^{m} c_k \mathbf{v}^{(k)}$$

Let V be square $(m \times m)$ with orthogonal columns. Then any $\mathbf{s} \in \mathbb{R}^m$ can be represented as

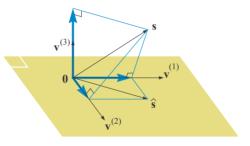
 $\mathbf{s} = \mathbf{V}\mathbf{c}$, where $(\forall k) c_k = \langle \mathbf{v}^{(k)}, \mathbf{s} \rangle / \|\mathbf{v}^{(k)}\|^2$



$$\mathbf{s} = \underbrace{\sum_{k=1}^{n} c_k \mathbf{v}^{(k)}}_{\hat{\mathbf{s}}} + \sum_{k=n+1}^{m} c_k \mathbf{v}^{(k)}$$

Let V be square $(m \times m)$ with orthogonal columns. Then any $\mathbf{s} \in \mathbb{R}^m$ can be represented as

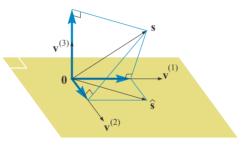
 $\mathbf{s} = \mathbf{V}\mathbf{c}$, where $(\forall k) \ c_k = \langle \mathbf{v}^{(k)}, \mathbf{s} \rangle / \|\mathbf{v}^{(k)}\|^2$



$$\mathbf{s} = \underbrace{\sum_{k=1}^{n} c_k \mathbf{v}^{(k)}}_{\hat{\mathbf{s}}} + \sum_{k=n+1}^{m} c_k \mathbf{v}^{(k)}$$

Let V be square $(m \times m)$ with orthogonal columns. Then any $\mathbf{s} \in \mathbb{R}^m$ can be represented as

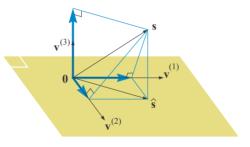
 $\mathbf{s} = \mathbf{V}\mathbf{c}$, where $(\forall k) c_k = \langle \mathbf{v}^{(k)}, \mathbf{s} \rangle / \|\mathbf{v}^{(k)}\|^2$



$$\mathbf{s} = \underbrace{\sum_{k=1}^{n} c_k \mathbf{v}^{(k)}}_{\hat{\mathbf{s}}} + \underbrace{\sum_{k=n+1}^{m} c_k \mathbf{v}^{(k)}}_{\mathbf{s}-\hat{\mathbf{s}}}$$

Let V be square $(m \times m)$ with orthogonal columns. Then any $\mathbf{s} \in \mathbb{R}^m$ can be represented as

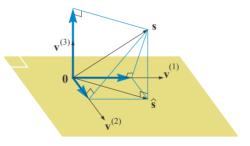
 $\mathbf{s} = \mathbf{V}\mathbf{c}$, where $(\forall k) \ c_k = \langle \mathbf{v}^{(k)}, \mathbf{s} \rangle / \|\mathbf{v}^{(k)}\|^2$

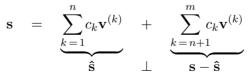


$$\mathbf{s} = \underbrace{\sum_{k=1}^{n} c_k \mathbf{v}^{(k)}}_{\hat{\mathbf{s}}} + \underbrace{\sum_{k=n+1}^{m} c_k \mathbf{v}^{(k)}}_{\mathbf{s}-\hat{\mathbf{s}}}$$

Let V be square $(m \times m)$ with orthogonal columns. Then any $\mathbf{s} \in \mathbb{R}^m$ can be represented as

 $\mathbf{s} = \mathbf{V}\mathbf{c}$, where $(\forall k) c_k = \langle \mathbf{v}^{(k)}, \mathbf{s} \rangle / \|\mathbf{v}^{(k)}\|^2$





5. Vectors ${\bf u},\,{\bf v}$ and ${\bf w}$ are mutually orthogonal and such that $\|{\bf u}\|=1,\,\|{\bf v}\|=2$ and $\|{\bf w}\|=3.$ Let

$$\mathbf{s} = 5\mathbf{u} + 7\mathbf{v} - 2\mathbf{w}$$

If \hat{s} is the projection of s onto the subspace defined by u and v, then $\|s-\hat{s}\|$ equals

A. 6
B. 12
C. 18
D. -6

6. Let

$$\mathbf{x} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & j & -1 & -j \\ 1 & -1 & 1 & -1 \\ 1 & -j & -1 & j \end{bmatrix} \begin{bmatrix} 6 \\ 1-2j \\ -1 \\ 1+2j \end{bmatrix}$$

If $\hat{\mathbf{x}}$ has the form $\begin{bmatrix} a & a & a \end{bmatrix}^T$, then the minimum value of $\|\mathbf{x} - \hat{\mathbf{x}}\|^2$, obtained by suitable choice of a, equals

A. 0

- **B**. 11
- **C**. 44

D. 144