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then the inner product (u, v) equals
A.

B.

and



then |lu+ v|? equals
A.
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3. Vectors u, v and w are mutually orthogonal, each having norm equal to 2. If
= u+ 2jv — 3w
y = (I+j)u—-v+w,
then (x, y) equals

o o w »
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e As in the real-valued case,

viu & (viu) = (u,v) = 0

e Projection of u onto v: vector 1 = ¢v suchthat u—a L v

u
0 u v
.- <V,u2>
vl

e If V € C™*™ has orthogonal columns, then any s € C™ can be written as
s = Vc

where each ¢, = projection coefficient of s onto the k™ column of V.
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A Special Orthogonal Matrix

VO D Y@ G

1 1 1 1

I U S R
Vo= 1 -1 1 -1
B

o k" column v(%) : complex sinusoid of frequency w = k - /2

e VI =V

e VIV = 41 (columns are orthogonal, each has norm = 2)
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then 4 - c3 equals
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Problem: Approximate s by § = V¢ so as to minimize the error vector norm
Is —8]|.

Solution: § is the orthogonal projection of s onto , defined by

s—§8 L vl ... v



Linear Least Squares Approximation = Orthogonal Projection

s—§8 L vl ... v
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5. Vectors u, v and w are mutually orthogonal and such that |jul| =1, ||v| =2

and ||w| = 3. Let
s = bu+7v—2w

If § is the projection of s onto the subspace defined by u and v, then ||s — §|| equals

A.

O N W



6. Let

1 1 1 1 6
I IR S 1-2j

Tl 101 -1 ~1
1 —j —1 1425

. T - . ,
If X hasthe form [ @ a a a ], then the minimum value of ||x — %/, obtained
by suitable choice of a, equals

A.

B.



