Inner Product and Norm of Complex Vectors

Inner Product and Norm of Complex Vectors

For \mathbf{v} and \mathbf{u} in \mathbb{C}^{m},

Inner Product and Norm of Complex Vectors

For \mathbf{v} and \mathbf{u} in \mathbb{C}^{m},

$$
\langle\mathbf{v}, \mathbf{u}\rangle \stackrel{\text { def }}{=}
$$

Inner Product and Norm of Complex Vectors

For \mathbf{v} and \mathbf{u} in \mathbb{C}^{m},

$$
\langle\mathbf{v}, \mathbf{u}\rangle \stackrel{\text { def }}{=} \sum_{i=1}^{m} v_{i}^{*} u_{i}
$$

Inner Product and Norm of Complex Vectors

For \mathbf{v} and \mathbf{u} in \mathbb{C}^{m},

$$
\langle\mathbf{v}, \mathbf{u}\rangle \stackrel{\text { def }}{=} \sum_{i=1}^{m} v_{i}^{*} u_{i}=\left(\mathbf{v}^{*}\right)^{T} \mathbf{u}
$$

Inner Product and Norm of Complex Vectors

For \mathbf{v} and \mathbf{u} in \mathbb{C}^{m},

$$
\langle\mathbf{v}, \mathbf{u}\rangle \stackrel{\text { def }}{=} \sum_{i=1}^{m} v_{i}^{*} u_{i}=\left(\mathbf{v}^{*}\right)^{T} \mathbf{u}=\mathbf{v}^{H} \mathbf{u}
$$

Inner Product and Norm of Complex Vectors

For \mathbf{v} and \mathbf{u} in \mathbb{C}^{m},

$$
\langle\mathbf{v}, \mathbf{u}\rangle \stackrel{\text { def }}{=} \sum_{i=1}^{m} v_{i}^{*} u_{i}=\left(\mathbf{v}^{*}\right)^{T} \mathbf{u}=\mathbf{v}^{H} \mathbf{u}
$$

(H : conjugate transpose, or Hermitian)

Inner Product and Norm of Complex Vectors

For \mathbf{v} and \mathbf{u} in \mathbb{C}^{m},

$$
\langle\mathbf{v}, \mathbf{u}\rangle \stackrel{\text { def }}{=} \sum_{i=1}^{m} v_{i}^{*} u_{i}=\left(\mathbf{v}^{*}\right)^{T} \mathbf{u}=\mathbf{v}^{H} \mathbf{u}
$$

(H : conjugate transpose, or Hermitian)

$$
\|\mathbf{v}\|^{2}=
$$

Inner Product and Norm of Complex Vectors

For \mathbf{v} and \mathbf{u} in \mathbb{C}^{m},

$$
\langle\mathbf{v}, \mathbf{u}\rangle \stackrel{\text { def }}{=} \sum_{i=1}^{m} v_{i}^{*} u_{i}=\left(\mathbf{v}^{*}\right)^{T} \mathbf{u}=\mathbf{v}^{H} \mathbf{u}
$$

(H : conjugate transpose, or Hermitian)

$$
\|\mathbf{v}\|^{2}=\langle\mathbf{v}, \mathbf{v}\rangle
$$

Inner Product and Norm of Complex Vectors

For \mathbf{v} and \mathbf{u} in \mathbb{C}^{m},

$$
\langle\mathbf{v}, \mathbf{u}\rangle \stackrel{\text { def }}{=} \sum_{i=1}^{m} v_{i}^{*} u_{i}=\left(\mathbf{v}^{*}\right)^{T} \mathbf{u}=\mathbf{v}^{H} \mathbf{u}
$$

(H : conjugate transpose, or Hermitian)

$$
\|\mathbf{v}\|^{2}=\langle\mathbf{v}, \mathbf{v}\rangle=\sum_{i=1}^{m} v_{i}^{*} v_{i}
$$

For \mathbf{v} and \mathbf{u} in \mathbb{C}^{m},

$$
\langle\mathbf{v}, \mathbf{u}\rangle \stackrel{\text { def }}{=} \sum_{i=1}^{m} v_{i}^{*} u_{i}=\left(\mathbf{v}^{*}\right)^{T} \mathbf{u}=\mathbf{v}^{H} \mathbf{u}
$$

(H : conjugate transpose, or Hermitian)

$$
\|\mathbf{v}\|^{2}=\langle\mathbf{v}, \mathbf{v}\rangle=\sum_{i=1}^{m} v_{i}^{*} v_{i}=\sum_{i=1}^{m}\left|v_{i}\right|^{2}
$$

For \mathbf{v} and \mathbf{u} in \mathbb{C}^{m},

$$
\langle\mathbf{v}, \mathbf{u}\rangle \stackrel{\text { def }}{=} \sum_{i=1}^{m} v_{i}^{*} u_{i}=\left(\mathbf{v}^{*}\right)^{T} \mathbf{u}=\mathbf{v}^{H} \mathbf{u}
$$

(H : conjugate transpose, or Hermitian)

$$
\|\mathbf{v}\|^{2}=\langle\mathbf{v}, \mathbf{v}\rangle=\sum_{i=1}^{m} v_{i}^{*} v_{i}=\sum_{i=1}^{m}\left|v_{i}\right|^{2}
$$

- $\langle\mathbf{v}, \mathbf{u}+\tilde{\mathbf{u}}\rangle$

For \mathbf{v} and \mathbf{u} in \mathbb{C}^{m},

$$
\langle\mathbf{v}, \mathbf{u}\rangle \stackrel{\text { def }}{=} \sum_{i=1}^{m} v_{i}^{*} u_{i}=\left(\mathbf{v}^{*}\right)^{T} \mathbf{u}=\mathbf{v}^{H} \mathbf{u}
$$

(H : conjugate transpose, or Hermitian)

$$
\|\mathbf{v}\|^{2}=\langle\mathbf{v}, \mathbf{v}\rangle=\sum_{i=1}^{m} v_{i}^{*} v_{i}=\sum_{i=1}^{m}\left|v_{i}\right|^{2}
$$

- $\langle\mathbf{v}, \mathbf{u}+\tilde{\mathbf{u}}\rangle=\langle\mathbf{v}, \mathbf{u}\rangle+\langle\mathbf{v}, \tilde{\mathbf{u}}\rangle$

For \mathbf{v} and \mathbf{u} in \mathbb{C}^{m},

$$
\langle\mathbf{v}, \mathbf{u}\rangle \stackrel{\text { def }}{=} \sum_{i=1}^{m} v_{i}^{*} u_{i}=\left(\mathbf{v}^{*}\right)^{T} \mathbf{u}=\mathbf{v}^{H} \mathbf{u}
$$

(H : conjugate transpose, or Hermitian)

$$
\|\mathbf{v}\|^{2}=\langle\mathbf{v}, \mathbf{v}\rangle=\sum_{i=1}^{m} v_{i}^{*} v_{i}=\sum_{i=1}^{m}\left|v_{i}\right|^{2}
$$

- $\langle\mathbf{v}, \mathbf{u}+\tilde{\mathbf{u}}\rangle=\langle\mathbf{v}, \mathbf{u}\rangle+\langle\mathbf{v}, \tilde{\mathbf{u}}\rangle$
- $\langle\alpha \mathbf{v}, \beta \mathbf{u}\rangle$

For \mathbf{v} and \mathbf{u} in \mathbb{C}^{m},

$$
\langle\mathbf{v}, \mathbf{u}\rangle \stackrel{\text { def }}{=} \sum_{i=1}^{m} v_{i}^{*} u_{i}=\left(\mathbf{v}^{*}\right)^{T} \mathbf{u}=\mathbf{v}^{H} \mathbf{u}
$$

(H : conjugate transpose, or Hermitian)

$$
\|\mathbf{v}\|^{2}=\langle\mathbf{v}, \mathbf{v}\rangle=\sum_{i=1}^{m} v_{i}^{*} v_{i}=\sum_{i=1}^{m}\left|v_{i}\right|^{2}
$$

- $\langle\mathbf{v}, \mathbf{u}+\tilde{\mathbf{u}}\rangle=\langle\mathbf{v}, \mathbf{u}\rangle+\langle\mathbf{v}, \tilde{\mathbf{u}}\rangle$
- $\langle\alpha \mathbf{v}, \beta \mathbf{u}\rangle=\alpha^{*} \beta\langle\mathbf{v}, \mathbf{u}\rangle$

For \mathbf{v} and \mathbf{u} in \mathbb{C}^{m},

$$
\langle\mathbf{v}, \mathbf{u}\rangle \stackrel{\text { def }}{=} \sum_{i=1}^{m} v_{i}^{*} u_{i}=\left(\mathbf{v}^{*}\right)^{T} \mathbf{u}=\mathbf{v}^{H} \mathbf{u}
$$

(H : conjugate transpose, or Hermitian)

$$
\|\mathbf{v}\|^{2}=\langle\mathbf{v}, \mathbf{v}\rangle=\sum_{i=1}^{m} v_{i}^{*} v_{i}=\sum_{i=1}^{m}\left|v_{i}\right|^{2}
$$

- $\langle\mathbf{v}, \mathbf{u}+\tilde{\mathbf{u}}\rangle=\langle\mathbf{v}, \mathbf{u}\rangle+\langle\mathbf{v}, \tilde{\mathbf{u}}\rangle$
- $\langle\alpha \mathbf{v}, \beta \mathbf{u}\rangle=\alpha^{*} \beta\langle\mathbf{v}, \mathbf{u}\rangle$
- $\langle\mathbf{u}, \mathbf{v}\rangle$

For \mathbf{v} and \mathbf{u} in \mathbb{C}^{m},

$$
\langle\mathbf{v}, \mathbf{u}\rangle \stackrel{\text { def }}{=} \sum_{i=1}^{m} v_{i}^{*} u_{i}=\left(\mathbf{v}^{*}\right)^{T} \mathbf{u}=\mathbf{v}^{H} \mathbf{u}
$$

(H : conjugate transpose, or Hermitian)

$$
\|\mathbf{v}\|^{2}=\langle\mathbf{v}, \mathbf{v}\rangle=\sum_{i=1}^{m} v_{i}^{*} v_{i}=\sum_{i=1}^{m}\left|v_{i}\right|^{2}
$$

- $\langle\mathbf{v}, \mathbf{u}+\tilde{\mathbf{u}}\rangle=\langle\mathbf{v}, \mathbf{u}\rangle+\langle\mathbf{v}, \tilde{\mathbf{u}}\rangle$
- $\langle\alpha \mathbf{v}, \beta \mathbf{u}\rangle=\alpha^{*} \beta\langle\mathbf{v}, \mathbf{u}\rangle$
- $\langle\mathbf{u}, \mathbf{v}\rangle=\langle\mathbf{v}, \mathbf{u}\rangle^{*}$

1. If

$$
\mathbf{u}=\left[\begin{array}{lll}
5 & j & 1-j
\end{array}\right]^{T} \quad \text { and } \quad \mathbf{v}=\left[\begin{array}{lll}
1 & 2+j & 3
\end{array}\right]^{T},
$$

then the inner product $\langle\mathbf{u}, \mathbf{v}\rangle$ equals
A. $7+j$
B. $7-j$
C. $9+j$
D. $9-j$
2. If

$$
\mathbf{u}=\left[\begin{array}{lll}
5 & j & 1-j
\end{array}\right]^{T} \quad \text { and } \quad \mathbf{v}=\left[\begin{array}{lll}
1 & 2+j & 3
\end{array}\right]^{T},
$$

then $\|\mathbf{u}+\mathbf{v}\|^{2}$ equals
A. 43
B. 51
C. 61
D. 197
3. Vectors \mathbf{u}, \mathbf{v} and \mathbf{w} are mutually orthogonal, each having norm equal to 2 . If

$$
\begin{aligned}
& \mathbf{x}=\mathbf{u}+2 j \mathbf{v}-3 \mathbf{w} \\
& \mathbf{y}=(1+j) \mathbf{u}-\mathbf{v}+\mathbf{w},
\end{aligned}
$$

then $\langle\mathbf{x}, \mathbf{y}\rangle$ equals
A. $-2+3 j$
B. $-2-j$
C. $-8+12 j$
D. $-8-4 j$

Orthogonality and Projection

- As in the real-valued case,

Orthogonality and Projection

- As in the real-valued case,

$$
\mathbf{v} \perp \mathbf{u}
$$

Orthogonality and Projection

- As in the real-valued case,

$$
\mathbf{v} \perp \mathbf{u} \quad \Leftrightarrow \quad\langle\mathbf{v}, \mathbf{u}\rangle=\langle\mathbf{u}, \mathbf{v}\rangle=0
$$

Orthogonality and Projection

- As in the real-valued case,

$$
\mathbf{v} \perp \mathbf{u} \quad \Leftrightarrow \quad\langle\mathbf{v}, \mathbf{u}\rangle=\langle\mathbf{u}, \mathbf{v}\rangle=0
$$

- Projection of \mathbf{u} onto \mathbf{v} :

Orthogonality and Projection

- As in the real-valued case,

$$
\mathbf{v} \perp \mathbf{u} \quad \Leftrightarrow \quad\langle\mathbf{v}, \mathbf{u}\rangle=\langle\mathbf{u}, \mathbf{v}\rangle=0
$$

- Projection of \mathbf{u} onto \mathbf{v} : vector $\hat{\mathbf{u}}=c \mathbf{v}$

Orthogonality and Projection

- As in the real-valued case,

$$
\mathbf{v} \perp \mathbf{u} \quad \Leftrightarrow \quad\langle\mathbf{v}, \mathbf{u}\rangle=\langle\mathbf{u}, \mathbf{v}\rangle=0
$$

- Projection of \mathbf{u} onto \mathbf{v} : vector $\hat{\mathbf{u}}=c \mathbf{v}$ such that $\mathbf{u}-\hat{\mathbf{u}} \perp \mathbf{v}$

Orthogonality and Projection

- As in the real-valued case,

$$
\mathbf{v} \perp \mathbf{u} \quad \Leftrightarrow \quad\langle\mathbf{v}, \mathbf{u}\rangle=\langle\mathbf{u}, \mathbf{v}\rangle=0
$$

- Projection of \mathbf{u} onto \mathbf{v} : vector $\hat{\mathbf{u}}=c \mathbf{v}$ such that $\mathbf{u}-\hat{\mathbf{u}} \perp \mathbf{v}$

Orthogonality and Projection

- As in the real-valued case,

$$
\mathbf{v} \perp \mathbf{u} \quad \Leftrightarrow \quad\langle\mathbf{v}, \mathbf{u}\rangle=\langle\mathbf{u}, \mathbf{v}\rangle=0
$$

- Projection of \mathbf{u} onto \mathbf{v} : vector $\hat{\mathbf{u}}=c \mathbf{v}$ such that $\mathbf{u}-\hat{\mathbf{u}} \perp \mathbf{v}$

Orthogonality and Projection

- As in the real-valued case,

$$
\mathbf{v} \perp \mathbf{u} \quad \Leftrightarrow \quad\langle\mathbf{v}, \mathbf{u}\rangle=\langle\mathbf{u}, \mathbf{v}\rangle=0
$$

- Projection of \mathbf{u} onto \mathbf{v} : vector $\hat{\mathbf{u}}=c \mathbf{v}$ such that $\mathbf{u}-\hat{\mathbf{u}} \perp \mathbf{v}$

Orthogonality and Projection

- As in the real-valued case,

$$
\mathbf{v} \perp \mathbf{u} \quad \Leftrightarrow \quad\langle\mathbf{v}, \mathbf{u}\rangle=\langle\mathbf{u}, \mathbf{v}\rangle=0
$$

- Projection of \mathbf{u} onto \mathbf{v} : vector $\hat{\mathbf{u}}=c \mathbf{v}$ such that $\mathbf{u}-\hat{\mathbf{u}} \perp \mathbf{v}$

- If $\mathbf{V} \in \mathbb{C}^{m \times m}$ has orthogonal columns,

Orthogonality and Projection

- As in the real-valued case,

$$
\mathbf{v} \perp \mathbf{u} \quad \Leftrightarrow \quad\langle\mathbf{v}, \mathbf{u}\rangle=\langle\mathbf{u}, \mathbf{v}\rangle=0
$$

- Projection of \mathbf{u} onto \mathbf{v} : vector $\hat{\mathbf{u}}=c \mathbf{v}$ such that $\mathbf{u}-\hat{\mathbf{u}} \perp \mathbf{v}$

- If $\mathbf{V} \in \mathbb{C}^{m \times m}$ has orthogonal columns, then any $\mathbf{s} \in \mathbb{C}^{m}$ can be written as

$$
\mathbf{s}=\mathbf{V c}
$$

Orthogonality and Projection

- As in the real-valued case,

$$
\mathbf{v} \perp \mathbf{u} \quad \Leftrightarrow \quad\langle\mathbf{v}, \mathbf{u}\rangle=\langle\mathbf{u}, \mathbf{v}\rangle=0
$$

- Projection of \mathbf{u} onto \mathbf{v} : vector $\hat{\mathbf{u}}=c \mathbf{v}$ such that $\mathbf{u}-\hat{\mathbf{u}} \perp \mathbf{v}$

- If $\mathbf{V} \in \mathbb{C}^{m \times m}$ has orthogonal columns, then any $\mathbf{s} \in \mathbb{C}^{m}$ can be written as

$$
\mathbf{s}=\mathbf{V c}
$$

where each c_{k}

Orthogonality and Projection

- As in the real-valued case,

$$
\mathbf{v} \perp \mathbf{u} \quad \Leftrightarrow \quad\langle\mathbf{v}, \mathbf{u}\rangle=\langle\mathbf{u}, \mathbf{v}\rangle=0
$$

- Projection of \mathbf{u} onto \mathbf{v} : vector $\hat{\mathbf{u}}=c \mathbf{v}$ such that $\mathbf{u}-\hat{\mathbf{u}} \perp \mathbf{v}$

- If $\mathbf{V} \in \mathbb{C}^{m \times m}$ has orthogonal columns, then any $\mathbf{s} \in \mathbb{C}^{m}$ can be written as

$$
\mathbf{s}=\mathbf{V c}
$$

where each $c_{k}=$ projection coefficient of \mathbf{s} onto the $k^{\text {th }}$ column of \mathbf{V}.

A Special Orthogonal Matrix

A Special Orthogonal Matrix

$$
\mathbf{v}^{(0)} \mathbf{v}^{(1)} \quad \mathbf{v}^{(2)} \quad \mathbf{v}^{(3)}
$$

A Special Orthogonal Matrix

$$
\mathbf{V}=\left[\begin{array}{rrrr}
\mathbf{v}^{(0)} & \mathbf{v}^{(1)} & \mathbf{v}^{(2)} & \mathbf{v}^{(3)} \\
{\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & j & -1 & -j \\
1 & -1 & 1 & -1 \\
1 & -j & -1 & j
\end{array}\right]}
\end{array}\right.
$$

A Special Orthogonal Matrix

$$
\mathbf{V}=\left[\begin{array}{ccrr}
\mathbf{v}^{(0)} & \mathbf{v}^{(1)} & \mathbf{v}^{(2)} & \mathbf{v}^{(3)} \\
{\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & j & -1 & -j \\
1 & -1 & 1 & -1 \\
1 & -j & -1 & j
\end{array}\right]}
\end{array}\right.
$$

- $k^{\text {th }}$ column $\mathbf{v}^{(k)}$:

A Special Orthogonal Matrix

$$
\mathbf{V}=\left[\begin{array}{rrrr}
\mathbf{v}^{(0)} & \mathbf{v}^{(1)} & \mathbf{v}^{(2)} & \mathbf{v}^{(3)} \\
{\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & j & -1 & -j \\
1 & -1 & 1 & -1 \\
1 & -j & -1 & j
\end{array}\right]}
\end{array}\right.
$$

- $k^{\text {th }}$ column $\mathbf{v}^{(k)}$: complex sinusoid of frequency $\omega=k \cdot \pi / 2$

A Special Orthogonal Matrix

$$
\mathbf{V}=\left[\begin{array}{rrrr}
\mathbf{v}^{(0)} & \mathbf{v}^{(1)} & \mathbf{v}^{(2)} & \mathbf{v}^{(3)} \\
1 & 1 & 1 & 1 \\
1 & j & -1 & -j \\
1 & -1 & 1 & -1 \\
1 & -j & -1 & j
\end{array}\right]
$$

- $k^{\text {th }}$ column $\mathbf{v}^{(k)}$: complex sinusoid of frequency $\omega=k \cdot \pi / 2$

A Special Orthogonal Matrix

$$
\mathbf{V}=\left[\begin{array}{rrrr}
\mathbf{v}^{(0)} & \mathbf{v}^{(1)} & \mathbf{v}^{(2)} & \mathbf{v}^{(3)} \\
1 & 1 & 1 & 1 \\
1 & j & -1 & -j \\
1 & -1 & 1 & -1 \\
1 & -j & -1 & j
\end{array}\right]
$$

- $k^{\text {th }}$ column $\mathbf{v}^{(k)}$: complex sinusoid of frequency $\omega=k \cdot \pi / 2$

- $\mathbf{V}^{T}=\mathbf{V}$

A Special Orthogonal Matrix

$$
\mathbf{V}=\left[\begin{array}{rrrr}
\mathbf{v}^{(0)} & \mathbf{v}^{(1)} & \mathbf{v}^{(2)} & \mathbf{v}^{(3)} \\
{\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & j & -1 & -j \\
1 & -1 & 1 & -1 \\
1 & -j & -1 & j
\end{array}\right]}
\end{array}\right.
$$

- $k^{\text {th }}$ column $\mathbf{v}^{(k)}$: complex sinusoid of frequency $\omega=k \cdot \pi / 2$

- $\mathbf{V}^{T}=\mathbf{V}$
- $\mathbf{V}^{H} \mathbf{V}=4 \mathbf{I}$

A Special Orthogonal Matrix

$$
\mathbf{V}=\left[\begin{array}{rrrr}
\mathbf{v}^{(0)} & \mathbf{v}^{(1)} & \mathbf{v}^{(2)} & \mathbf{v}^{(3)} \\
{\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & j & -1 & -j \\
1 & -1 & 1 & -1 \\
1 & -j & -1 & j
\end{array}\right]}
\end{array}\right.
$$

- $k^{\text {th }}$ column $\mathbf{v}^{(k)}$: complex sinusoid of frequency $\omega=k \cdot \pi / 2$

- $\mathbf{V}^{T}=\mathbf{V}$
- $\mathbf{V}^{H} \mathbf{V}=4 \mathbf{I}$ (columns are orthogonal, each has norm $=2$)

4. If

$$
\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & j & -1 & -j \\
1 & -1 & 1 & -1 \\
1 & -j & -1 & j
\end{array}\right]\left[\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{l}
s_{0} \\
s_{1} \\
s_{2} \\
s_{3}
\end{array}\right],
$$

then $4 \cdot c_{3}$ equals
A. $s_{0}+s_{1}+s_{2}+s_{3}$
B. $s_{0}+j s_{1}-s_{2}-j s_{3}$
C. $s_{0}-s_{1}+s_{2}-s_{3}$
D. $s_{0}-j s_{1}-s_{2}+j s_{3}$

Linear Least Squares Approximation

Linear Least Squares Approximation

If the $m \times m$ matrix \mathbf{V} is invertible,

Linear Least Squares Approximation

If the $m \times m$ matrix \mathbf{V} is invertible, the equation

$$
\mathbf{V c}=\mathbf{s}
$$

Linear Least Squares Approximation

If the $m \times m$ matrix \mathbf{V} is invertible, the equation

$$
\mathbf{V c}=\mathbf{s}
$$

has a unique solution \mathbf{c} for every $\mathbf{s} \in \mathbb{C}^{m}$.

Linear Least Squares Approximation

If the $m \times m$ matrix \mathbf{V} is invertible, the equation

$$
\mathbf{V c}=\mathbf{s}
$$

has a unique solution \mathbf{c} for every $\mathbf{s} \in \mathbb{C}^{m}$. (Exact representation of \mathbf{s} using \mathbf{V})

Linear Least Squares Approximation

If the $m \times m$ matrix \mathbf{V} is invertible, the equation

$$
\mathbf{V c}=\mathbf{s}
$$

has a unique solution \mathbf{c} for every $\mathbf{s} \in \mathbb{C}^{m}$. (Exact representation of \mathbf{s} using \mathbf{V}) $m-n>0$ columns of \mathbf{V} deleted \Rightarrow

Linear Least Squares Approximation

If the $m \times m$ matrix \mathbf{V} is invertible, the equation

$$
\mathbf{V c}=\mathbf{s}
$$

has a unique solution \mathbf{c} for every $\mathbf{s} \in \mathbb{C}^{m}$. (Exact representation of \mathbf{s} using \mathbf{V}) $m-n>0$ columns of \mathbf{V} deleted \Rightarrow no longer possible to express every $\mathbf{s} \in \mathbb{C}^{m}$

Linear Least Squares Approximation

If the $m \times m$ matrix \mathbf{V} is invertible, the equation

$$
\mathbf{V c}=\mathrm{s}
$$

has a unique solution \mathbf{c} for every $\mathbf{s} \in \mathbb{C}^{m}$. (Exact representation of \mathbf{s} using \mathbf{V}) $m-n>0$ columns of \mathbf{V} deleted \Rightarrow no longer possible to express every $\mathbf{s} \in \mathbb{C}^{m}$ as a linear combination Vc of the remaining columns $\mathbf{v}^{(1)}, \ldots, \mathbf{v}^{(n)}$

Linear Least Squares Approximation

If the $m \times m$ matrix \mathbf{V} is invertible, the equation

$$
\mathbf{V c}=\mathrm{s}
$$

has a unique solution \mathbf{c} for every $\mathbf{s} \in \mathbb{C}^{m}$. (Exact representation of \mathbf{s} using \mathbf{V}) $m-n>0$ columns of \mathbf{V} deleted \Rightarrow no longer possible to express every $\mathbf{s} \in \mathbb{C}^{m}$ as a linear combination Vc of the remaining columns $\mathbf{v}^{(1)}, \ldots, \mathbf{v}^{(n)}$

Linear Least Squares Approximation

If the $m \times m$ matrix \mathbf{V} is invertible, the equation

$$
\mathbf{V c}=\mathbf{s}
$$

has a unique solution \mathbf{c} for every $\mathbf{s} \in \mathbb{C}^{m}$. (Exact representation of \mathbf{s} using \mathbf{V}) $m-n>0$ columns of \mathbf{V} deleted \Rightarrow no longer possible to express every $\mathbf{s} \in \mathbb{C}^{m}$ as a linear combination Vc of the remaining columns $\mathbf{v}^{(1)}, \ldots, \mathbf{v}^{(n)}$

Linear Least Squares Approximation

If the $m \times m$ matrix \mathbf{V} is invertible, the equation

$$
\mathbf{V c}=\mathbf{s}
$$

has a unique solution \mathbf{c} for every $\mathbf{s} \in \mathbb{C}^{m}$. (Exact representation of \mathbf{s} using \mathbf{V}) $m-n>0$ columns of \mathbf{V} deleted \Rightarrow no longer possible to express every $\mathbf{s} \in \mathbb{C}^{m}$ as a linear combination Vc of the remaining columns $\mathbf{v}^{(1)}, \ldots, \mathbf{v}^{(n)}$

Problem: Approximate s

Linear Least Squares Approximation

If the $m \times m$ matrix \mathbf{V} is invertible, the equation

$$
\mathbf{V c}=\mathbf{s}
$$

has a unique solution \mathbf{c} for every $\mathbf{s} \in \mathbb{C}^{m}$. (Exact representation of \mathbf{s} using \mathbf{V}) $m-n>0$ columns of \mathbf{V} deleted \Rightarrow no longer possible to express every $\mathbf{s} \in \mathbb{C}^{m}$ as a linear combination Vc of the remaining columns $\mathbf{v}^{(1)}, \ldots, \mathbf{v}^{(n)}$

Problem: Approximate \mathbf{s} by $\hat{\mathbf{s}}=\mathbf{V c}$

Linear Least Squares Approximation

If the $m \times m$ matrix \mathbf{V} is invertible, the equation

$$
\mathbf{V c}=\mathbf{s}
$$

has a unique solution \mathbf{c} for every $\mathbf{s} \in \mathbb{C}^{m}$. (Exact representation of \mathbf{s} using \mathbf{V}) $m-n>0$ columns of \mathbf{V} deleted \Rightarrow no longer possible to express every $\mathbf{s} \in \mathbb{C}^{m}$ as a linear combination Vc of the remaining columns $\mathbf{v}^{(1)}, \ldots, \mathbf{v}^{(n)}$

Problem: Approximate \mathbf{s} by $\hat{\mathbf{s}}=\mathbf{V c}$ so as to minimize the error vector norm $\|\mathbf{s}-\hat{\mathbf{s}}\|$.

Linear Least Squares Approximation

If the $m \times m$ matrix \mathbf{V} is invertible, the equation

$$
\mathbf{V c}=\mathbf{s}
$$

has a unique solution \mathbf{c} for every $\mathbf{s} \in \mathbb{C}^{m}$. (Exact representation of \mathbf{s} using \mathbf{V}) $m-n>0$ columns of \mathbf{V} deleted \Rightarrow no longer possible to express every $\mathbf{s} \in \mathbb{C}^{m}$ as a linear combination Vc of the remaining columns $\mathbf{v}^{(1)}, \ldots, \mathbf{v}^{(n)}$

Problem: Approximate \mathbf{s} by $\hat{\mathbf{s}}=\mathbf{V c}$ so as to minimize the error vector norm $\|\mathbf{s}-\hat{\mathbf{s}}\|$.
Solution:

Linear Least Squares Approximation

If the $m \times m$ matrix \mathbf{V} is invertible, the equation

$$
\mathbf{V c}=\mathbf{s}
$$

has a unique solution \mathbf{c} for every $\mathbf{s} \in \mathbb{C}^{m}$. (Exact representation of \mathbf{s} using \mathbf{V}) $m-n>0$ columns of \mathbf{V} deleted \Rightarrow no longer possible to express every $\mathbf{s} \in \mathbb{C}^{m}$ as a linear combination Vc of the remaining columns $\mathbf{v}^{(1)}, \ldots, \mathbf{v}^{(n)}$

Problem: Approximate \mathbf{s} by $\hat{\mathbf{s}}=\mathbf{V c}$ so as to minimize the error vector norm $\|\mathbf{s}-\hat{\mathbf{s}}\|$.
Solution: $\hat{\mathbf{s}}$ is the orthogonal projection of \mathbf{s} onto

Linear Least Squares Approximation

If the $m \times m$ matrix \mathbf{V} is invertible, the equation

$$
\mathbf{V c}=\mathbf{s}
$$

has a unique solution \mathbf{c} for every $\mathbf{s} \in \mathbb{C}^{m}$. (Exact representation of \mathbf{s} using \mathbf{V}) $m-n>0$ columns of \mathbf{V} deleted \Rightarrow no longer possible to express every $\mathbf{s} \in \mathbb{C}^{m}$ as a linear combination Vc of the remaining columns $\mathbf{v}^{(1)}, \ldots, \mathbf{v}^{(n)}$

Problem: Approximate \mathbf{s} by $\hat{\mathbf{s}}=\mathbf{V c}$ so as to minimize the error vector norm $\|\mathbf{s}-\hat{\mathbf{s}}\|$.
Solution: $\hat{\mathbf{s}}$ is the orthogonal projection of \mathbf{s} onto , defined by

$$
\mathbf{s}-\hat{\mathbf{s}} \perp \mathbf{v}^{(1)}, \ldots, \mathbf{v}^{(n)}
$$

The Orthogonal Case

The Orthogonal Case
Let \mathbf{V} be square $(m \times m)$ with orthogonal columns.

The Orthogonal Case

Let \mathbf{V} be square $(m \times m)$ with orthogonal columns.

The Orthogonal Case

Let \mathbf{V} be square $(m \times m)$ with orthogonal columns.
Then any $\mathbf{s} \in \mathbb{R}^{m}$

The Orthogonal Case
Let \mathbf{V} be square $(m \times m)$ with orthogonal columns.
Then any $\mathbf{s} \in \mathbb{R}^{m}$ can be represented as

$$
\mathrm{s}=\mathrm{Vc}
$$

The Orthogonal Case
Let \mathbf{V} be square $(m \times m)$ with orthogonal columns.
Then any $\mathbf{s} \in \mathbb{R}^{m}$ can be represented as

$$
\mathbf{s}=\mathbf{V} \mathbf{c}, \quad \text { where }
$$

The Orthogonal Case
Let \mathbf{V} be square $(m \times m)$ with orthogonal columns.
Then any $\mathbf{s} \in \mathbb{R}^{m}$ can be represented as

$$
\mathbf{s}=\mathbf{V c}, \quad \text { where } \quad c_{k}=\left\langle\mathbf{v}^{(k)}, \mathbf{s}\right\rangle /\left\|\mathbf{v}^{(k)}\right\|^{2}
$$

The Orthogonal Case
Let \mathbf{V} be square $(m \times m)$ with orthogonal columns.
Then any $\mathbf{s} \in \mathbb{R}^{m}$ can be represented as

$$
\mathbf{s}=\mathbf{V c}, \quad \text { where } \quad(\forall k) \quad c_{k}=\left\langle\mathbf{v}^{(k)}, \mathbf{s}\right\rangle /\left\|\mathbf{v}^{(k)}\right\|^{2}
$$

The Orthogonal Case
Let \mathbf{V} be square $(m \times m)$ with orthogonal columns.
Then any $\mathbf{s} \in \mathbb{R}^{m}$ can be represented as

$$
\mathbf{s}=\mathbf{V c}, \quad \text { where } \quad(\forall k) \quad c_{k}=\left\langle\mathbf{v}^{(k)}, \mathbf{s}\right\rangle /\left\|\mathbf{v}^{(k)}\right\|^{2}
$$

The Orthogonal Case
Let \mathbf{V} be square $(m \times m)$ with orthogonal columns.
Then any $\mathbf{s} \in \mathbb{R}^{m}$ can be represented as

$$
\mathbf{s}=\mathbf{V c}, \quad \text { where } \quad(\forall k) \quad c_{k}=\left\langle\mathbf{v}^{(k)}, \mathbf{s}\right\rangle /\left\|\mathbf{v}^{(k)}\right\|^{2}
$$

The Orthogonal Case
Let \mathbf{V} be square $(m \times m)$ with orthogonal columns.
Then any $\mathbf{s} \in \mathbb{R}^{m}$ can be represented as

$$
\mathbf{s}=\mathbf{V c}, \quad \text { where } \quad(\forall k) \quad c_{k}=\left\langle\mathbf{v}^{(k)}, \mathbf{s}\right\rangle /\left\|\mathbf{v}^{(k)}\right\|^{2}
$$

The Orthogonal Case
Let \mathbf{V} be square $(m \times m)$ with orthogonal columns.
Then any $\mathbf{s} \in \mathbb{R}^{m}$ can be represented as

$$
\mathbf{s}=\mathbf{V c}, \quad \text { where } \quad(\forall k) \quad c_{k}=\left\langle\mathbf{v}^{(k)}, \mathbf{s}\right\rangle /\left\|\mathbf{v}^{(k)}\right\|^{2}
$$

The Orthogonal Case
Let \mathbf{V} be square $(m \times m)$ with orthogonal columns.
Then any $\mathbf{s} \in \mathbb{R}^{m}$ can be represented as

$$
\mathbf{s}=\mathbf{V c}, \quad \text { where } \quad(\forall k) \quad c_{k}=\left\langle\mathbf{v}^{(k)}, \mathrm{s}\right\rangle /\left\|\mathbf{v}^{(k)}\right\|^{2}
$$

The Orthogonal Case
Let \mathbf{V} be square $(m \times m)$ with orthogonal columns.
Then any $\mathbf{s} \in \mathbb{R}^{m}$ can be represented as

$$
\mathbf{s}=\mathbf{V c}, \quad \text { where } \quad(\forall k) \quad c_{k}=\left\langle\mathbf{v}^{(k)}, \mathrm{s}\right\rangle /\left\|\mathbf{v}^{(k)}\right\|^{2}
$$

The Orthogonal Case
Let \mathbf{V} be square $(m \times m)$ with orthogonal columns.
Then any $\mathbf{s} \in \mathbb{R}^{m}$ can be represented as

$$
\mathbf{s}=\mathbf{V c}, \quad \text { where } \quad(\forall k) \quad c_{k}=\left\langle\mathbf{v}^{(k)}, \mathrm{s}\right\rangle /\left\|\mathbf{v}^{(k)}\right\|^{2}
$$

The Orthogonal Case
Let \mathbf{V} be square $(m \times m)$ with orthogonal columns.
Then any $\mathbf{s} \in \mathbb{R}^{m}$ can be represented as

$$
\mathbf{s}=\mathbf{V c}, \quad \text { where } \quad(\forall k) \quad c_{k}=\left\langle\mathbf{v}^{(k)}, \mathrm{s}\right\rangle /\left\|\mathbf{v}^{(k)}\right\|^{2}
$$

The Orthogonal Case
Let \mathbf{V} be square $(m \times m)$ with orthogonal columns.
Then any $\mathbf{s} \in \mathbb{R}^{m}$ can be represented as

$$
\mathbf{s}=\mathbf{V c}, \quad \text { where } \quad(\forall k) \quad c_{k}=\left\langle\mathbf{v}^{(k)}, \mathrm{s}\right\rangle /\left\|\mathbf{v}^{(k)}\right\|^{2}
$$

The Orthogonal Case
Let \mathbf{V} be square $(m \times m)$ with orthogonal columns.
Then any $\mathbf{s} \in \mathbb{R}^{m}$ can be represented as

$$
\mathbf{s}=\mathbf{V c}, \quad \text { where } \quad(\forall k) \quad c_{k}=\left\langle\mathbf{v}^{(k)}, \mathrm{s}\right\rangle /\left\|\mathbf{v}^{(k)}\right\|^{2}
$$

The Orthogonal Case
Let \mathbf{V} be square $(m \times m)$ with orthogonal columns.
Then any $\mathbf{s} \in \mathbb{R}^{m}$ can be represented as

$$
\mathbf{s}=\mathbf{V c}, \quad \text { where } \quad(\forall k) \quad c_{k}=\left\langle\mathbf{v}^{(k)}, \mathrm{s}\right\rangle /\left\|\mathbf{v}^{(k)}\right\|^{2}
$$

The Orthogonal Case
Let \mathbf{V} be square $(m \times m)$ with orthogonal columns.
Then any $\mathbf{s} \in \mathbb{R}^{m}$ can be represented as

$$
\mathbf{s}=\mathbf{V c}, \quad \text { where } \quad(\forall k) \quad c_{k}=\left\langle\mathbf{v}^{(k)}, \mathrm{s}\right\rangle /\left\|\mathbf{v}^{(k)}\right\|^{2}
$$

5. Vectors \mathbf{u}, \mathbf{v} and \mathbf{w} are mutually orthogonal and such that $\|\mathbf{u}\|=1,\|\mathbf{v}\|=2$ and $\|\mathbf{w}\|=3$. Let

$$
\mathbf{s}=5 \mathbf{u}+7 \mathbf{v}-2 \mathbf{w}
$$

If $\hat{\mathbf{s}}$ is the projection of \mathbf{s} onto the subspace defined by \mathbf{u} and \mathbf{v}, then $\|\mathbf{s}-\hat{\mathbf{s}}\|$ equals
A.
B. 12
C. 18
D. -6

6 . Let

$$
\mathbf{x}=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & j & -1 & -j \\
1 & -1 & 1 & -1 \\
1 & -j & -1 & j
\end{array}\right]\left[\begin{array}{c}
6 \\
1-2 j \\
-1 \\
1+2 j
\end{array}\right]
$$

If $\hat{\mathbf{x}}$ has the form $\left[\begin{array}{llll}a & a & a & a\end{array}\right]^{T}$, then the minimum value of $\|\mathbf{x}-\hat{\mathbf{x}}\|^{2}$, obtained by suitable choice of a, equals
A. 0
B. 11
C. 44
D. 144

