
Inner Product and Norm of Complex Vectors

For v and u in Cm,

〈v,u〉 def
=

m∑
i=1

v∗i ui = (v∗)Tu = vHu

(H: conjugate transpose, or Hermitian)

‖v‖2 = 〈v,v〉 =
m∑
i=1

v∗i vi =
m∑
i=1

|vi|2

• 〈v,u+ ũ〉 = 〈v,u〉 + 〈v, ũ〉

• 〈αv, βu〉 = α∗β〈v,u〉

• 〈u,v〉 = 〈v,u〉∗
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• 〈αv, βu〉 = α∗β〈v,u〉

• 〈u,v〉 = 〈v,u〉∗



Inner Product and Norm of Complex Vectors

For v and u in Cm,

〈v,u〉 def
=

m∑
i=1

v∗i ui = (v∗)Tu = vHu

(H: conjugate transpose, or Hermitian)

‖v‖2 = 〈v,v〉 =
m∑
i=1

v∗i vi =
m∑
i=1

|vi|2
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1. If

u =
[
5 j 1− j

]T
and v =

[
1 2 + j 3

]T
,

then the inner product 〈u, v〉 equals

A. 7 + j

B. 7− j

C. 9 + j

D. 9− j



2. If

u =
[
5 j 1− j

]T
and v =

[
1 2 + j 3

]T
,

then ‖u+ v‖2 equals

A. 43

B. 51

C. 61

D. 197



3. Vectors u, v and w are mutually orthogonal, each having norm equal to 2. If

x = u + 2jv − 3w

y = (1 + j)u − v + w ,

then 〈x, y〉 equals

A. −2 + 3j

B. −2− j

C. −8 + 12j

D. −8− 4j



Orthogonality and Projection

• As in the real-valued case,

v⊥u ⇔ 〈v,u〉 = 〈u,v〉 = 0

• Projection of u onto v: vector û = cv such that u− û ⊥ v

0 v

u

u

c =
〈v,u〉
‖v‖2

(order matters in numerator!)

• If V ∈ Cm×m has orthogonal columns, then any s ∈ Cm can be written as

s = Vc

where each ck = projection coefficient of s onto the kth column of V.
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0 v

u

u

c =
〈v,u〉
‖v‖2

(order matters in numerator!)

• If V ∈ Cm×m has orthogonal columns, then any s ∈ Cm can be written as

s = Vc

where each ck = projection coefficient of s onto the kth column of V.



Orthogonality and Projection

• As in the real-valued case,

v⊥u ⇔ 〈v,u〉 = 〈u,v〉 = 0

• Projection of u onto v: vector û = cv such that u− û ⊥ v
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A Special Orthogonal Matrix

V = v(0) v(1) v(2) v(3) = (v(1))∗

V =


1 1 1 1
1 j −1 −j
1 −1 1 −1
1 −j −1 j


• kth column v(k) : complex sinusoid of frequency ω = k · π/2

Im

1   Re
ω = 0

ω = π/2

ω = 3π/2

• VT = V

• VHV = 4I (columns are orthogonal, each has norm = 2)
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4. If 
1 1 1 1
1 j −1 −j
1 −1 1 −1
1 −j −1 j



c0
c1
c2
c3

 =


s0
s1
s2
s3

 ,

then 4 · c3 equals

A. s0 + s1 + s2 + s3

B. s0 + js1 − s2 − js3

C. s0 − s1 + s2 − s3

D. s0 − js1 − s2 + js3



Linear Least Squares Approximation

If the m×m matrix V is invertible, the equation

Vc = s

has a unique solution c for every s ∈ Cm. (Exact representation of s using V)

m− n > 0 columns of V deleted ⇒ no longer possible to express every s ∈ Cm as a
linear combination Vc of the remaining columns v(1), . . . ,v(n)

0

v
(2)

s

v
(1)

v
(3)

Problem: Approximate s by ŝ = Vc so as to minimize the error vector norm
‖s− ŝ‖.
Solution: ŝ is the orthogonal projection of s onto 00 , defined by

s− ŝ ⊥ v(1), . . . ,v(n)
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s− ŝ ⊥ v(1), . . . ,v(n)



Linear Least Squares Approximation

If the m×m matrix V is invertible, the equation

Vc = s

has a unique solution c for every s ∈ Cm.

(Exact representation of s using V)

m− n > 0 columns of V deleted ⇒ no longer possible to express every s ∈ Cm as a
linear combination Vc of the remaining columns v(1), . . . ,v(n)

0

v
(2)

s

v
(1)

v
(3)
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Problem: Approximate s by ŝ = Vc so as to minimize the error vector norm
‖s− ŝ‖.
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Linear Least Squares Approximation ≡ Orthogonal Projection
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The Orthogonal Case

Let V be square (m×m) with orthogonal columns.

Then any s ∈ Rm can be represented as

s = Vc , where (∀k) ck = 〈v(k), s〉/‖v(k)‖2

s =

n∑
k=1

ckv
(k)

︸ ︷︷ ︸ +

m∑
k=n+1

ckv
(k)

︸ ︷︷ ︸
ŝ ⊥ s− ŝ

ŝ : projection of s onto subspace generated by v(1), . . . , v(n)
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5. Vectors u, v and w are mutually orthogonal and such that ‖u‖ = 1, ‖v‖ = 2
and ‖w‖ = 3. Let

s = 5u+ 7v − 2w

If ŝ is the projection of s onto the subspace defined by u and v, then ‖s− ŝ‖ equals

A. −6

B. −12

C. −18

D. −6



6 . Let

x =


1 1 1 1
1 j −1 −j
1 −1 1 −1
1 −j −1 j




6
1− 2j
−1

1 + 2j


If x̂ has the form

[
a a a a

]T
, then the minimum value of ‖x − x̂‖2, obtained

by suitable choice of a, equals

A. 0

B. 11

C. 44

D. 144


