

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$\mathbf{x} \longrightarrow A \longrightarrow \mathbf{A}\mathbf{x} = \mathbf{b}$$

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\mathbf{x} \longrightarrow A \qquad \longrightarrow \mathbf{A}\mathbf{x} = \mathbf{b}$$

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$\vdots$$

$$\mathbf{x} \longrightarrow A \longrightarrow \mathbf{A}\mathbf{x} = \mathbf{b}$$

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

$$\mathbf{x} \longrightarrow A$$
 $\mathbf{A} = \mathbf{b}$

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

Definition. $\mathbf{A} \in \mathbb{R}^{m \times n}$ is invertible

$$\mathbf{x} \longrightarrow A \longrightarrow \mathbf{A}\mathbf{x} = \mathbf{b}$$

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

Definition. $\mathbf{A} \in \mathbb{R}^{m \times n}$ is invertible (or nonsingular)

$$\mathbf{x} \longrightarrow A$$
 $\mathbf{A} = \mathbf{b}$

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

Definition. $\mathbf{A} \in \mathbb{R}^{m \times n}$ is invertible (or nonsingular) if for every $\mathbf{b} \in \mathbb{R}^{m \times 1}$

$$\mathbf{x} \longrightarrow A \longrightarrow \mathbf{A}\mathbf{x} = \mathbf{b}$$

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

Definition. $\mathbf{A} \in \mathbb{R}^{m \times n}$ is invertible (or nonsingular) if for every $\mathbf{b} \in \mathbb{R}^{m \times 1}$ there exists a unique $\mathbf{x} \in \mathbb{R}^{n \times 1}$

$$\mathbf{x} \longrightarrow A \longrightarrow \mathbf{A}\mathbf{x} = \mathbf{b}$$

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

Definition. $\mathbf{A} \in \mathbb{R}^{m \times n}$ is invertible (or nonsingular) if for every $\mathbf{b} \in \mathbb{R}^{m \times 1}$ there exists a unique $\mathbf{x} \in \mathbb{R}^{n \times 1}$ such that

$$Ax = b$$

$$\mathbf{x} \longrightarrow A \longrightarrow \mathbf{A}\mathbf{x} = \mathbf{b}$$

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

Definition. $\mathbf{A} \in \mathbb{R}^{m \times n}$ is invertible (or nonsingular) if for every $\mathbf{b} \in \mathbb{R}^{m \times 1}$ there exists a unique $\mathbf{x} \in \mathbb{R}^{n \times 1}$ such that $\mathbf{A}\mathbf{x} = \mathbf{b}$

$$\mathbf{x} \longrightarrow A \longrightarrow \mathbf{A}\mathbf{x} = \mathbf{b}$$

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

Definition. $\mathbf{A} \in \mathbb{R}^{m \times n}$ is invertible (or nonsingular) if for every $\mathbf{b} \in \mathbb{R}^{m \times 1}$ there exists a unique $\mathbf{x} \in \mathbb{R}^{n \times 1}$ such that $\mathbf{A}\mathbf{x} = \mathbf{b}$

Only square matrices (m = n) can be invertible.

1. Which (one ore more) of the following statements about the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & -2 \\ 3 & -6 \end{bmatrix}$$

are correct?

- (i) The equation Ax = b, where $b = \begin{bmatrix} 1 & 0 \end{bmatrix}^T$, has a unique solution.
- (ii) The equation Ax = b, where $b = \begin{bmatrix} 1 & 3 \end{bmatrix}^T$, has multiple solutions.
- (iii) A is invertible.
- (iv) A is invertible.

1. Which (one ore more) of the following statements about the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & -2 \\ 3 & -6 \end{bmatrix}$$

are correct?

- (i) The equation Ax = b, where $b = \begin{bmatrix} 1 & 0 \end{bmatrix}^T$, has a unique solution.
- (ii) The equation Ax = b, where $b = \begin{bmatrix} 1 & 3 \end{bmatrix}^T$, has multiple solutions.
- (iii) A is invertible.
- (iv) A is invertible.

$$\mathbf{x} \longrightarrow A \longrightarrow \mathbf{y}$$

$$\mathbf{A}^{-1} \stackrel{\text{def}}{=}$$

$$\mathbf{A}^{-1} \stackrel{\text{def}}{=} \text{matrix of } A^{-1}(\cdot)$$

Assuming \mathbf{A} is invertible:

Assuming \mathbf{A} is invertible:

Assuming A is invertible:

Assuming A is invertible:

$$\mathbf{A}^{-1} \stackrel{\text{def}}{=} \text{matrix of } A^{-1}(\,\cdot\,)$$

$$\bullet \qquad (\mathbf{A}^{-1})^{-1} = \mathbf{A}$$

Assuming A is invertible:

$$\mathbf{A}^{-1} \stackrel{\mathrm{def}}{=} \operatorname{matrix} \operatorname{of} A^{-1}(\,\cdot\,)$$

•
$$(\mathbf{A}^{-1})^{-1} = \mathbf{A}$$

• $\mathbf{A}^{-1}\mathbf{A}$

$$\mathbf{A}^{-1} \stackrel{\mathrm{def}}{=} \operatorname{matrix} \operatorname{of} A^{-1}(\,\cdot\,)$$

•
$$(\mathbf{A}^{-1})^{-1} = \mathbf{A}$$

•
$$\mathbf{A}^{-1}\mathbf{A} = \mathbf{A}\mathbf{A}^{-1}$$

$$\mathbf{A}^{-1} \stackrel{\mathrm{def}}{=} \operatorname{matrix} \operatorname{of} A^{-1}(\,\cdot\,)$$

•
$$(\mathbf{A}^{-1})^{-1} = \mathbf{A}$$

•
$$\mathbf{A}^{-1}\mathbf{A} = \mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$$

$$\mathbf{A}^{-1} \stackrel{\text{def}}{=} \text{matrix of } A^{-1}(\,\cdot\,)$$

•
$$(\mathbf{A}^{-1})^{-1} = \mathbf{A}$$

•
$$\mathbf{A}^{-1}\mathbf{A} = \mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$$

•
$$AB = I$$

Assuming A is invertible:

$$\mathbf{A}^{-1} \stackrel{\mathrm{def}}{=} \operatorname{matrix} \operatorname{of} A^{-1}(\,\cdot\,)$$

•
$$(\mathbf{A}^{-1})^{-1} = \mathbf{A}$$

•
$$\mathbf{A}^{-1}\mathbf{A} = \mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$$

 $\bullet \qquad \mathbf{AB} \ = \ \mathbf{I} \quad \Leftrightarrow \quad \mathbf{A} \text{ and } \mathbf{B} \text{ are inverses of each other}$

2. The matrix

$$\mathbf{A} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

represents counterclockwise rotation by angle $\boldsymbol{\theta}$ on the Cartesian plane.

Determine A^{-1} .

3. If

$$\mathbf{A}\begin{bmatrix}2\\3\end{bmatrix} = \begin{bmatrix}1\\0\end{bmatrix}$$
 and $\mathbf{A}\begin{bmatrix}-1\\4\end{bmatrix} = \begin{bmatrix}1\\1\end{bmatrix}$,
then $\mathbf{A}^{-1} =$

4. Given

$$\mathbf{L} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ -1 & -1 & 1 & 0 \\ -1 & -1 & -1 & 1 \end{bmatrix} \quad \text{and} \quad \mathbf{L}^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 \\ c & 2 & 1 & 1 \end{bmatrix},$$

what is the value of c?

(i) 0 (ii) 3 (iii) 4 (iv) -3

From L8.2 4 :

•
$$(\mathbf{A}\mathbf{B})^T = \mathbf{B}^T\mathbf{A}^T$$

From L8.2 4 :

•
$$(\mathbf{A}\mathbf{B})^T = \mathbf{B}^T\mathbf{A}^T$$

From L8.2 4 :

•
$$(\mathbf{A}\mathbf{B})^T = \mathbf{B}^T\mathbf{A}^T$$

•
$$(\mathbf{A}^T)^{-1} = (\mathbf{A}^{-1})^T$$

From L8.2 4 :

•
$$(\mathbf{A}\mathbf{B})^T = \mathbf{B}^T\mathbf{A}^T$$

•
$$(\mathbf{A}^T)^{-1} = (\mathbf{A}^{-1})^T$$

•
$$(\mathbf{AB})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$$

From L8.2 4 :

•
$$(\mathbf{A}\mathbf{B})^T = \mathbf{B}^T\mathbf{A}^T$$

•
$$(\mathbf{A}^T)^{-1} = (\mathbf{A}^{-1})^T$$

•
$$(\mathbf{AB})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$$

From L8.2 4 :

•
$$(\mathbf{A}\mathbf{B})^T = \mathbf{B}^T\mathbf{A}^T$$

•
$$(\mathbf{A}^T)^{-1} = (\mathbf{A}^{-1})^T$$

•
$$(\mathbf{AB})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$$

If $\begin{bmatrix} a & 0 & 0 \\ b & d & 0 \\ c & e & f \end{bmatrix}^{-1} = \begin{bmatrix} p & 0 & 0 \\ q & s & 0 \\ r & t & u \end{bmatrix}$, then $\begin{bmatrix} f & 0 & 0 \\ c & b & a \\ e & d & 0 \end{bmatrix}^{-1} =$

5.

$$\mathbf{L}\mathbf{x} = \mathbf{b} \qquad \Leftrightarrow \qquad$$

$$\mathbf{Lx} = \mathbf{b} \qquad \Leftrightarrow \qquad \begin{cases} \ell_{11}x_1 &= b_1 \\ \ell_{21}x_1 + \ell_{22}x_2 &= b_2 \\ \vdots & \vdots & \ddots & \vdots \\ \ell_{m1}x_1 + \ell_{m2}x_2 + \dots + \ell_{mm}x_m &= b_m \end{cases}$$

Solved by forward substitution:

$$\mathbf{Lx} = \mathbf{b} \qquad \Leftrightarrow \qquad \begin{cases} \ell_{11}x_1 &= b_1 \\ \ell_{21}x_1 + \ell_{22}x_2 &= b_2 \\ \vdots & \vdots & \ddots & \vdots \\ \ell_{m1}x_1 + \ell_{m2}x_2 + \dots + \ell_{mm}x_m &= b_m \end{cases}$$

Solved by forward substitution: $x_1 \rightarrow x_2 \rightarrow \cdots \rightarrow x_m$

$$\mathbf{L}\mathbf{x} = \mathbf{b} \qquad \Leftrightarrow \qquad \begin{cases} \ell_{11}x_1 &= b_1\\ \ell_{21}x_1 + \ell_{22}x_2 &= b_2\\ \vdots & \vdots & \ddots & \vdots\\ \ell_{m1}x_1 + \ell_{m2}x_2 + \dots + \ell_{mm}x_m &= b_m \end{cases}$$

Solved by forward substitution: $x_1 \rightarrow x_2 \rightarrow \cdots \rightarrow x_m$ Solution exists and is unique (i.e., **L** is invertible)

$$\mathbf{Lx} = \mathbf{b} \qquad \Leftrightarrow \qquad \begin{cases} & \ell_{11}x_1 & = b_1 \\ & \ell_{21}x_1 + \ell_{22}x_2 & = b_2 \\ & \vdots & \vdots & \ddots & \vdots \\ & & \ell_{m1}x_1 + \ell_{m2}x_2 + \dots + \ell_{mm}x_m & = b_m \end{cases}$$

Solved by forward substitution: $x_1 \rightarrow x_2 \rightarrow \cdots \rightarrow x_m$

Solution exists and is unique (i.e., L is invertible) if and only if $\ell_{ii} \neq 0$ for all *i*.

Key fact:

Key fact: If \mathbf{Q} is an invertible matrix of the same size $(m \times m)$ as \mathbf{A} ,

Key fact: If \mathbf{Q} is an invertible matrix of the same size $(m \times m)$ as \mathbf{A} , then

$$Ax = b \Leftrightarrow$$

Key fact: If \mathbf{Q} is an invertible matrix of the same size $(m \times m)$ as \mathbf{A} , then

 $Ax = b \quad \Leftrightarrow \quad QAx = Qb$

Key fact: If \mathbf{Q} is an invertible matrix of the same size $(m \times m)$ as \mathbf{A} , then

$$Ax = b \quad \Leftrightarrow \quad QAx = Qb$$

• Forward elimination

Key fact: If \mathbf{Q} is an invertible matrix of the same size $(m \times m)$ as \mathbf{A} , then

$$Ax = b \quad \Leftrightarrow \quad QAx = Qb$$

• Forward elimination (m-1 steps):

Key fact: If \mathbf{Q} is an invertible matrix of the same size $(m \times m)$ as \mathbf{A} , then

$$Ax = b \quad \Leftrightarrow \quad QAx = Qb$$

• Forward elimination (m-1 steps):

 $Q^{(m-1)} \cdots Q^{(2)}Q^{(1)}Ax =$

Key fact: If \mathbf{Q} is an invertible matrix of the same size $(m \times m)$ as \mathbf{A} , then

$$Ax = b \qquad \Leftrightarrow \qquad QAx = Qb$$

• Forward elimination (m-1 steps):

 $\mathbf{Q}^{(m-1)}\cdots \mathbf{Q}^{(2)}\mathbf{Q}^{(1)}\mathbf{A}\mathbf{x} = \mathbf{Q}^{(m-1)}\cdots \mathbf{Q}^{(2)}\mathbf{Q}^{(1)}\mathbf{b}$

Key fact: If \mathbf{Q} is an invertible matrix of the same size $(m \times m)$ as \mathbf{A} , then

$$Ax = b \quad \Leftrightarrow \quad QAx = Qb$$

• Forward elimination (m-1 steps):

$$\mathbf{Q}^{(m-1)}\cdots \mathbf{Q}^{(2)}\mathbf{Q}^{(1)}\mathbf{A}\mathbf{x} = \mathbf{Q}^{(m-1)}\cdots \mathbf{Q}^{(2)}\mathbf{Q}^{(1)}\mathbf{b}$$

In j^{th} step, variable x_j is eliminated from equations $(j+1)^{\text{th}}$ through m^{th} .

Key fact: If \mathbf{Q} is an invertible matrix of the same size $(m \times m)$ as \mathbf{A} , then

$$Ax = b \quad \Leftrightarrow \quad QAx = Qb$$

• Forward elimination (m-1 steps):

$$\mathbf{Q}^{(m-1)}\cdots \mathbf{Q}^{(2)}\mathbf{Q}^{(1)}\mathbf{A}\mathbf{x} = \mathbf{Q}^{(m-1)}\cdots \mathbf{Q}^{(2)}\mathbf{Q}^{(1)}\mathbf{b}$$

In j^{th} step, variable x_j is eliminated from equations $(j + 1)^{th}$ through m^{th} . End result:

$$\mathbf{U}\mathbf{x} = \mathbf{c},$$

where \mathbf{U} is upper triangular.

Key fact: If \mathbf{Q} is an invertible matrix of the same size $(m \times m)$ as \mathbf{A} , then

$$Ax = b \quad \Leftrightarrow \quad QAx = Qb$$

• Forward elimination (m-1 steps):

$$\mathbf{Q}^{(m-1)}\cdots \mathbf{Q}^{(2)}\mathbf{Q}^{(1)}\mathbf{A}\mathbf{x} = \mathbf{Q}^{(m-1)}\cdots \mathbf{Q}^{(2)}\mathbf{Q}^{(1)}\mathbf{b}$$

In j^{th} step, variable x_j is eliminated from equations $(j + 1)^{\text{th}}$ through m^{th} . End result:

$$\mathbf{U}\mathbf{x} = \mathbf{c},$$

where \mathbf{U} is upper triangular.

• Backward substitution

Key fact: If \mathbf{Q} is an invertible matrix of the same size $(m \times m)$ as \mathbf{A} , then

$$Ax = b \quad \Leftrightarrow \quad QAx = Qb$$

• Forward elimination (m-1 steps):

$$\mathbf{Q}^{(m-1)}\cdots \mathbf{Q}^{(2)}\mathbf{Q}^{(1)}\mathbf{A}\mathbf{x} = \mathbf{Q}^{(m-1)}\cdots \mathbf{Q}^{(2)}\mathbf{Q}^{(1)}\mathbf{b}$$

In j^{th} step, variable x_j is eliminated from equations $(j + 1)^{\text{th}}$ through m^{th} . End result:

$$\mathbf{U}\mathbf{x} = \mathbf{c} ,$$

where \mathbf{U} is upper triangular.

• Backward substitution solves $\mathbf{U}\mathbf{x} = \mathbf{c}$.

Key fact: If \mathbf{Q} is an invertible matrix of the same size $(m \times m)$ as \mathbf{A} , then

$$Ax = b \quad \Leftrightarrow \quad QAx = Qb$$

• Forward elimination (m-1 steps):

$$\mathbf{Q}^{(m-1)}\cdots \mathbf{Q}^{(2)}\mathbf{Q}^{(1)}\mathbf{A}\mathbf{x} = \mathbf{Q}^{(m-1)}\cdots \mathbf{Q}^{(2)}\mathbf{Q}^{(1)}\mathbf{b}$$

In j^{th} step, variable x_j is eliminated from equations $(j + 1)^{\text{th}}$ through m^{th} . End result:

$$\mathbf{U}\mathbf{x} = \mathbf{c} ,$$

where \mathbf{U} is upper triangular.

• Backward substitution solves $\mathbf{U}\mathbf{x} = \mathbf{c}$.

Invertibility (or not) of A is established during forward elimination.

6 and **7**. Forward phase of Gaussian elimination:

m	x_1	x_2	x_3	b
	4	5	2	12
-1	4	7	-2	4
c	3	3	2	9
	4	5	2	12
	0	2	-4	-8
3/8	0	-3/4	1/2	0

Determine the value of c and the solution (x_1, x_2, x_3) .