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Invertible Matrices

X —» A Ax=Db
a11T1 + ajpxs + - + appr, = by
ag1x1 + agexs + - + agpr, = by

Am1T1 + amaT2 + -+ + QmnTn = bm

Definition. A € R™*" is invertible (or nonsingular) if for every b € R™*! there exists
a unique x € R™*! such that
Ax = b

Only square matrices (m = n) can be invertible.
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1. Which (one ore more) of the following statements about the matrix
1 -2
S

The equation Ax = b, where b = [ 1 0]7, has a unique solution.

are correct?

The equation Ax = b, where b = [ 1 37, has multiple solutions.

)
)

(i) Ais invertible.
) Ais invertible.
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Key ldentities on Matrix Inverse

Assuming A is invertible:

A1 Y matrix of AL
° (Afl)fl = A
o A7'A = AAL =1

° AB =1 < A and B are inverses of each other



2. The matrix

cosf) —sind
A = [ sin 6 Cosﬁ]

represents counterclockwise rotation by angle 6 on the Cartesian plane.

Determine A~1.
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Product and Transpose

From L8.2 A :
e (AB)T = BTAT

Assuming A and B are both invertible,
° (AT)—l — (A—l)T
e (AB)"! = B!A!

» y=ABx
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Triangular Matrices

0
L= U=
0
by = b
U121 + oo = b
Lx=Db & . )
emlwl + em2x2 + -+ gmmxm = by

Solved by forward substitution: &1 —xo — - — T,

Solution exists and is unique (i.e., L is invertible) if and only if ¢;; # 0 for all 3.
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Solution of Ax = b by Gaussian Elimination

Key fact: If Q is an invertible matrix of the same size (m x m) as A, then

Ax = b & QAx = Qb

e Forward elimination (m — 1 steps):

Qm—1 ... QWAx = Qmb... QWb
In j* step, variable z; is eliminated from equations (j + 1) through m*™.
End result:
Ux = c,
where U is upper triangular.
e Backward substitution solves Ux = c.

Invertibility (or not) of A is established during forward elimination.



6 and 7. Forward phase of Gaussian elimination:

m T X2 €3 b
5 2 12

~1 4 7 -2 4
c 3 3 2 9

4 5 2 12

0 —4 -8

3/8 0 —3/4  1/2 0

Determine the value of ¢ and the solution (z1, z2, x3).





