Invertible Matrices

Invertible Matrices

Invertible Matrices

$$
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1}
$$

Invertible Matrices

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} & =b_{2}
\end{aligned}
$$

Invertible Matrices

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} & =b_{2}
\end{aligned}
$$

Invertible Matrices

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} & =b_{2} \\
\vdots & \vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} & =b_{m}
\end{aligned}
$$

Invertible Matrices

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} & =b_{2} \\
\vdots & \vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} & =b_{m}
\end{aligned}
$$

Definition. $\mathbf{A} \in \mathbb{R}^{m \times n}$ is invertible

Invertible Matrices

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
& \vdots \\
& \vdots \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
\end{aligned}
$$

Definition. $\mathbf{A} \in \mathbb{R}^{m \times n}$ is invertible (or nonsingular)

Invertible Matrices

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} & =b_{2} \\
\vdots & \vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} & =b_{m}
\end{aligned}
$$

Definition. $\mathbf{A} \in \mathbb{R}^{m \times n}$ is invertible (or nonsingular) if for every $\mathbf{b} \in \mathbb{R}^{m \times 1}$

Invertible Matrices

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} & =b_{2} \\
\vdots & \vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} & =b_{m}
\end{aligned}
$$

Definition. $\mathbf{A} \in \mathbb{R}^{m \times n}$ is invertible (or nonsingular) if for every $\mathbf{b} \in \mathbb{R}^{m \times 1}$ there exists a unique $\mathbf{x} \in \mathbb{R}^{n \times 1}$

Invertible Matrices

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} & =b_{2} \\
\vdots & \vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} & =b_{m}
\end{aligned}
$$

Definition. $\mathbf{A} \in \mathbb{R}^{m \times n}$ is invertible (or nonsingular) if for every $\mathbf{b} \in \mathbb{R}^{m \times 1}$ there exists a unique $\mathbf{x} \in \mathbb{R}^{n \times 1}$ such that

$$
\mathbf{A x}=\mathbf{b}
$$

Invertible Matrices

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} & =b_{2} \\
\vdots & \vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} & =b_{m}
\end{aligned}
$$

Definition. $\mathbf{A} \in \mathbb{R}^{m \times n}$ is invertible (or nonsingular) if for every $\mathbf{b} \in \mathbb{R}^{m \times 1}$ there exists a unique $\mathbf{x} \in \mathbb{R}^{n \times 1}$ such that

$$
\mathbf{A x}=\mathbf{b}
$$

Invertible Matrices

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} & =b_{2} \\
\vdots & \vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} & =b_{m}
\end{aligned}
$$

Definition. $\mathbf{A} \in \mathbb{R}^{m \times n}$ is invertible (or nonsingular) if for every $\mathbf{b} \in \mathbb{R}^{m \times 1}$ there exists a unique $\mathbf{x} \in \mathbb{R}^{n \times 1}$ such that

$$
\mathbf{A x}=\mathbf{b}
$$

Only square matrices ($m=n$) can be invertible.

1. Which (one ore more) of the following statements about the matrix
are correct?

$$
\mathbf{A}=\left[\begin{array}{ll}
1 & -2 \\
3 & -6
\end{array}\right]
$$

(i) The equation $\mathrm{Ax}=\mathrm{b}$, where $\mathrm{b}=\left[\begin{array}{ll}1 & 0\end{array}\right]^{T}$, has a unique solution.
(ii) The equation $\mathrm{Ax}=\mathrm{b}$, where $\mathrm{b}=\left[\begin{array}{ll}1 & 3\end{array}\right]^{T}$, has multiple solutions.
(iii) A is invertible.
(iv) A is invertible.

1. Which (one ore more) of the following statements about the matrix

$$
\mathbf{A}=\left[\begin{array}{ll}
1 & -2 \\
3 & -6
\end{array}\right]
$$

are correct?
(i) The equation $\mathbf{A x}=\mathbf{b}$, where $\mathbf{b}=\left[\begin{array}{ll}1 & 0\end{array}\right]^{T}$, has a unique solution.
(ii) The equation $\mathbf{A x}=\mathbf{b}$, where $\mathbf{b}=\left[\begin{array}{ll}1 & 3\end{array}\right]^{T}$, has multiple solutions.
(iii) \mathbf{A} is invertible.
(iv) \mathbf{A} is invertible.

Key Identities on Matrix Inverse

Key Identities on Matrix Inverse
Assuming A is invertible:

Key Identities on Matrix Inverse
Assuming \mathbf{A} is invertible:

Key Identities on Matrix Inverse
Assuming \mathbf{A} is invertible:

Key Identities on Matrix Inverse
Assuming \mathbf{A} is invertible:

Key Identities on Matrix Inverse
Assuming \mathbf{A} is invertible:

$$
\mathbf{A}^{-1} \stackrel{\text { def }}{=}
$$

Assuming \mathbf{A} is invertible:

$$
\mathbf{A}^{-1} \stackrel{\text { def }}{=} \text { matrix of } A^{-1}(\cdot)
$$

Assuming \mathbf{A} is invertible:

$$
\mathbf{A}^{-1} \stackrel{\text { def }}{=} \text { matrix of } A^{-1}(\cdot)
$$

Assuming \mathbf{A} is invertible:

$$
\mathbf{A}^{-1} \stackrel{\text { def }}{=} \text { matrix of } A^{-1}(\cdot)
$$

Assuming \mathbf{A} is invertible:

$$
\mathbf{A}^{-1} \stackrel{\text { def }}{=} \text { matrix of } A^{-1}(\cdot)
$$

Assuming \mathbf{A} is invertible:

$$
\mathbf{A}^{-1} \stackrel{\text { def }}{=} \text { matrix of } A^{-1}(\cdot)
$$

Assuming \mathbf{A} is invertible:

$$
\begin{gathered}
\mathbf{A}^{-1} \stackrel{\text { def }}{=} \text { matrix of } A^{-1}(\cdot) \\
\quad \cdot \quad\left(\mathbf{A}^{-1}\right)^{-1}=\mathbf{A}
\end{gathered}
$$

Assuming \mathbf{A} is invertible:

$$
\begin{gathered}
\mathbf{A}^{-1} \stackrel{\text { def }}{=} \text { matrix of } A^{-1}(\cdot) \\
\cdot \\
\left(\mathbf{A}^{-1}\right)^{-1}=\mathbf{A} \\
\cdot \\
\mathbf{A}^{-1} \mathbf{A}
\end{gathered}
$$

Assuming \mathbf{A} is invertible:

$$
\begin{gathered}
\mathbf{A}^{-1} \stackrel{\text { def }}{=} \text { matrix of } A^{-1}(\cdot) \\
\bullet \\
\left(\mathbf{A}^{-1}\right)^{-1}=\mathbf{A} \\
\\
\quad \mathbf{A}^{-1} \mathbf{A}=\mathbf{A A}^{-1}
\end{gathered}
$$

Assuming \mathbf{A} is invertible:

$$
\begin{aligned}
& \mathbf{A}^{-1} \stackrel{\text { def }}{=} \text { matrix of } A^{-1}(\cdot) \\
& \bullet\left(\mathbf{A}^{-1}\right)^{-1}=\mathbf{A} \\
& \mathbf{A}^{-1} \mathbf{A}=\mathbf{A A}^{-1}=\mathbf{I}
\end{aligned}
$$

Assuming \mathbf{A} is invertible:

$$
\begin{aligned}
\mathbf{A}^{-1} & \stackrel{\text { def }}{=} \text { matrix of } A^{-1}(\cdot) \\
\bullet & \left(\mathbf{A}^{-1}\right)^{-1}=\mathbf{A} \\
\bullet & \mathbf{A}^{-1} \mathbf{A}=\mathbf{A A}^{-1}=\mathbf{I} \\
\bullet & \mathbf{A B}=\mathbf{I}
\end{aligned}
$$

Assuming \mathbf{A} is invertible:

$$
\begin{aligned}
& \mathbf{A}^{-1} \stackrel{\text { def }}{=} \text { matrix of } A^{-1}(\cdot) \\
&\left(\mathbf{A}^{-1}\right)^{-1}=\mathbf{A} \\
& \mathbf{A}^{-1} \mathbf{A}=\mathbf{A} \mathbf{A}^{-1}=\mathbf{I}
\end{aligned}
$$

- $\mathbf{A B}=\mathbf{I} \quad \Leftrightarrow \quad \mathbf{A}$ and \mathbf{B} are inverses of each other

2. The matrix

$$
\mathbf{A}=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

represents counterclockwise rotation by angle θ on the Cartesian plane.
Determine \mathbf{A}^{-1}.
3. If

$$
\mathbf{A}\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \text { and } \quad \mathbf{A}\left[\begin{array}{r}
-1 \\
4
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

then $\mathbf{A}^{-1}=$
4. Given

$$
\mathbf{L}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
-1 & -1 & 1 & 0 \\
-1 & -1 & -1 & 1
\end{array}\right] \quad \text { and } \quad \mathbf{L}^{-1}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
2 & 1 & 1 & 0 \\
c & 2 & 1 & 1
\end{array}\right]
$$

what is the value of c ?
(i) 0
(ii) 3
(iii) 4
(iv) -3

Product and Transpose

Product and Transpose

From L8.2 4 :

Product and Transpose

From L8.2 4 :

- $(\mathbf{A B})^{T}=\mathbf{B}^{T} \mathbf{A}^{T}$

Product and Transpose

From L8.2 4 :

- $(\mathbf{A B})^{T}=\mathbf{B}^{T} \mathbf{A}^{T}$

Assuming \mathbf{A} and \mathbf{B} are both invertible,

Product and Transpose

From L8.2 4 :

- $(\mathbf{A B})^{T}=\mathbf{B}^{T} \mathbf{A}^{T}$

Assuming \mathbf{A} and \mathbf{B} are both invertible,

- $\left(\mathbf{A}^{T}\right)^{-1}=\left(\mathbf{A}^{-1}\right)^{T}$

Product and Transpose

From L8.2 4 :

- $(\mathbf{A B})^{T}=\mathbf{B}^{T} \mathbf{A}^{T}$

Assuming \mathbf{A} and \mathbf{B} are both invertible,

- $\left(\mathbf{A}^{T}\right)^{-1}=\left(\mathbf{A}^{-1}\right)^{T}$
- $(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}$

Product and Transpose

From L8.2 4 :

- $(\mathbf{A B})^{T}=\mathbf{B}^{T} \mathbf{A}^{T}$

Assuming \mathbf{A} and \mathbf{B} are both invertible,

- $\left(\mathbf{A}^{T}\right)^{-1}=\left(\mathbf{A}^{-1}\right)^{T}$
- $(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}$

Product and Transpose

From L8.2 4 :

- $(\mathbf{A B})^{T}=\mathbf{B}^{T} \mathbf{A}^{T}$

Assuming \mathbf{A} and \mathbf{B} are both invertible,

- $\left(\mathbf{A}^{T}\right)^{-1}=\left(\mathbf{A}^{-1}\right)^{T}$
- $(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}$

5.

$$
\text { If } \begin{aligned}
& {\left[\begin{array}{lll}
a & 0 & 0 \\
b & d & 0 \\
c & e & f
\end{array}\right]^{-1}=\left[\begin{array}{lll}
p & 0 & 0 \\
q & s & 0 \\
r & t & u
\end{array}\right], \text { then } } \\
& {\left[\begin{array}{lll}
f & 0 & 0 \\
c & b & a \\
e & d & 0
\end{array}\right]^{-1}=}
\end{aligned}
$$

Triangular Matrices

Triangular Matrices

Triangular Matrices

$$
\mathbf{L x}=\mathbf{b} \quad \Leftrightarrow
$$

Triangular Matrices

$$
\mathbf{L x}=\mathbf{b} \quad \Leftrightarrow \quad\left\{\begin{array}{ccc}
\ell_{11} x_{1} & & b_{1} \\
\ell_{21} x_{1}+\ell_{22} x_{2} & & =b_{2} \\
\vdots & \vdots & \ddots \\
\ell_{m 1} x_{1}+\ell_{m 2} x_{2}+\cdots+\ell_{m m} x_{m} & = & b_{m}
\end{array}\right.
$$

Triangular Matrices

$\mathbf{L x}=\mathbf{b} \quad \Leftrightarrow \quad\left\{\begin{array}{ccc}\ell_{11} x_{1} & & b_{1} \\ \ell_{21} x_{1}+\ell_{22} x_{2} & & b_{2} \\ \vdots & \vdots & \ddots \\ \ell_{m 1} x_{1}+\ell_{m 2} x_{2}+\cdots+\ell_{m m} x_{m} & = & b_{m}\end{array}\right.$

Solved by forward substitution:

Triangular Matrices

Solved by forward substitution: $x_{1} \rightarrow x_{2} \rightarrow \cdots \rightarrow x_{m}$

Triangular Matrices

$$
\mathbf{L x}=\mathbf{b} \quad \Leftrightarrow \quad\left\{\begin{array}{ccc}
\ell_{11} x_{1} & & b_{1} \\
\ell_{21} x_{1}+\ell_{22} x_{2} & & =b_{2} \\
\vdots & \vdots & \ddots \\
\ell_{m 1} x_{1}+\ell_{m 2} x_{2}+\cdots+\ell_{m m} x_{m} & = & b_{m}
\end{array}\right.
$$

Solved by forward substitution: $x_{1} \rightarrow x_{2} \rightarrow \cdots \rightarrow x_{m}$
Solution exists and is unique (i.e., \mathbf{L} is invertible)

Triangular Matrices

Solved by forward substitution: $x_{1} \rightarrow x_{2} \rightarrow \cdots \rightarrow x_{m}$
Solution exists and is unique (i.e., \mathbf{L} is invertible) if and only if $\ell_{i i} \neq 0$ for all i.

Solution of $\mathbf{A x}=\mathbf{b}$ by Gaussian Elimination

Solution of $\mathbf{A x}=\mathbf{b}$ by Gaussian Elimination

Key fact:

Solution of $\mathbf{A x}=\mathbf{b}$ by Gaussian Elimination
Key fact: If \mathbf{Q} is an invertible matrix of the same size $(m \times m)$ as \mathbf{A},

Solution of $\mathrm{Ax}=\mathrm{b}$ by Gaussian Elimination

Key fact: If \mathbf{Q} is an invertible matrix of the same size $(m \times m)$ as \mathbf{A}, then

$$
\mathbf{A x}=\mathbf{b} \quad \Leftrightarrow
$$

Solution of $\mathrm{Ax}=\mathrm{b}$ by Gaussian Elimination

Key fact: If \mathbf{Q} is an invertible matrix of the same size $(m \times m)$ as \mathbf{A}, then

$$
\mathbf{A x}=\mathbf{b} \quad \Leftrightarrow \quad \mathrm{QAx}=\mathbf{Q} \mathbf{b}
$$

Solution of $\mathbf{A x}=\mathbf{b}$ by Gaussian Elimination

Key fact: If \mathbf{Q} is an invertible matrix of the same size $(m \times m)$ as \mathbf{A}, then

$$
\mathbf{A x}=\mathbf{b} \quad \Leftrightarrow \quad \mathrm{QAx}=\mathbf{Q} \mathbf{b}
$$

- Forward elimination

Solution of $\mathbf{A x}=\mathbf{b}$ by Gaussian Elimination

Key fact: If \mathbf{Q} is an invertible matrix of the same size $(m \times m)$ as \mathbf{A}, then

$$
\mathbf{A x}=\mathbf{b} \quad \Leftrightarrow \quad \mathrm{QAx}=\mathbf{Q} \mathbf{b}
$$

- Forward elimination ($m-1$ steps):

Solution of $\mathrm{Ax}=\mathrm{b}$ by Gaussian Elimination

Key fact: If \mathbf{Q} is an invertible matrix of the same size $(m \times m)$ as \mathbf{A}, then

$$
\mathbf{A x}=\mathbf{b} \quad \Leftrightarrow \quad \mathrm{QAx}=\mathbf{Q} \mathbf{b}
$$

- Forward elimination ($m-1$ steps):

$$
\mathbf{Q}^{(m-1)} \cdots \mathbf{Q}^{(2)} \mathbf{Q}^{(1)} \mathbf{A} \mathbf{x}=
$$

Solution of $\mathrm{Ax}=\mathrm{b}$ by Gaussian Elimination

Key fact: If \mathbf{Q} is an invertible matrix of the same size $(m \times m)$ as \mathbf{A}, then

$$
\mathbf{A x}=\mathbf{b} \quad \Leftrightarrow \quad \mathrm{QAx}=\mathbf{Q} \mathbf{b}
$$

- Forward elimination ($m-1$ steps):

$$
\mathbf{Q}^{(m-1)} \cdots \mathbf{Q}^{(2)} \mathbf{Q}^{(1)} \mathbf{A} \mathbf{x}=\mathbf{Q}^{(m-1)} \cdots \mathbf{Q}^{(2)} \mathbf{Q}^{(1)} \mathbf{b}
$$

Solution of $\mathbf{A x}=\mathbf{b}$ by Gaussian Elimination

Key fact: If \mathbf{Q} is an invertible matrix of the same size $(m \times m)$ as \mathbf{A}, then

$$
\mathbf{A x}=\mathbf{b} \quad \Leftrightarrow \quad \mathrm{QAx}=\mathbf{Q} \mathbf{b}
$$

- Forward elimination ($m-1$ steps):

$$
\mathbf{Q}^{(m-1)} \cdots \mathbf{Q}^{(2)} \mathbf{Q}^{(1)} \mathbf{A} \mathbf{x}=\mathbf{Q}^{(m-1)} \cdots \mathbf{Q}^{(2)} \mathbf{Q}^{(1)} \mathbf{b}
$$

In $j^{\text {th }}$ step, variable x_{j} is eliminated from equations $(j+1)^{\text {th }}$ through $m^{\text {th }}$.

Solution of $\mathbf{A x}=\mathbf{b}$ by Gaussian Elimination

Key fact: If \mathbf{Q} is an invertible matrix of the same size $(m \times m)$ as \mathbf{A}, then

$$
\mathbf{A x}=\mathbf{b} \quad \Leftrightarrow \quad \mathrm{QAx}=\mathbf{Q} \mathbf{b}
$$

- Forward elimination ($m-1$ steps):

$$
\mathbf{Q}^{(m-1)} \cdots \mathbf{Q}^{(2)} \mathbf{Q}^{(1)} \mathbf{A} \mathbf{x}=\mathbf{Q}^{(m-1)} \cdots \mathbf{Q}^{(2)} \mathbf{Q}^{(1)} \mathbf{b}
$$

In $j^{\text {th }}$ step, variable x_{j} is eliminated from equations $(j+1)^{\text {th }}$ through $m^{\text {th }}$. End result:

$$
\mathbf{U x}=\mathbf{c},
$$

where \mathbf{U} is upper triangular.

Solution of $\mathbf{A x}=\mathrm{b}$ by Gaussian Elimination

Key fact: If \mathbf{Q} is an invertible matrix of the same size $(m \times m)$ as \mathbf{A}, then

$$
\mathbf{A x}=\mathbf{b} \quad \Leftrightarrow \quad \mathrm{QAx}=\mathbf{Q} \mathbf{b}
$$

- Forward elimination ($m-1$ steps):

$$
\mathbf{Q}^{(m-1)} \cdots \mathbf{Q}^{(2)} \mathbf{Q}^{(1)} \mathbf{A} \mathbf{x}=\mathbf{Q}^{(m-1)} \cdots \mathbf{Q}^{(2)} \mathbf{Q}^{(1)} \mathbf{b}
$$

In $j^{\text {th }}$ step, variable x_{j} is eliminated from equations $(j+1)^{\text {th }}$ through $m^{\text {th }}$. End result:

$$
\mathbf{U x}=\mathbf{c},
$$

where \mathbf{U} is upper triangular.

- Backward substitution

Solution of $\mathbf{A x}=\mathrm{b}$ by Gaussian Elimination

Key fact: If \mathbf{Q} is an invertible matrix of the same size $(m \times m)$ as \mathbf{A}, then

$$
\mathbf{A x}=\mathbf{b} \quad \Leftrightarrow \quad \mathrm{QAx}=\mathbf{Q} \mathbf{b}
$$

- Forward elimination ($m-1$ steps):

$$
\mathbf{Q}^{(m-1)} \cdots \mathbf{Q}^{(2)} \mathbf{Q}^{(1)} \mathbf{A} \mathbf{x}=\mathbf{Q}^{(m-1)} \cdots \mathbf{Q}^{(2)} \mathbf{Q}^{(1)} \mathbf{b}
$$

In $j^{\text {th }}$ step, variable x_{j} is eliminated from equations $(j+1)^{\text {th }}$ through $m^{\text {th }}$. End result:

$$
\mathbf{U x}=\mathbf{c},
$$

where \mathbf{U} is upper triangular.

- Backward substitution solves $\mathbf{U x}=\mathbf{c}$.

Solution of $\mathrm{Ax}=\mathrm{b}$ by Gaussian Elimination

Key fact: If \mathbf{Q} is an invertible matrix of the same size $(m \times m)$ as \mathbf{A}, then

$$
\mathbf{A x}=\mathbf{b} \quad \Leftrightarrow \quad \mathrm{QAx}=\mathbf{Q} \mathbf{b}
$$

- Forward elimination ($m-1$ steps):

$$
\mathbf{Q}^{(m-1)} \cdots \mathbf{Q}^{(2)} \mathbf{Q}^{(1)} \mathbf{A} \mathbf{x}=\mathbf{Q}^{(m-1)} \cdots \mathbf{Q}^{(2)} \mathbf{Q}^{(1)} \mathbf{b}
$$

In $j^{\text {th }}$ step, variable x_{j} is eliminated from equations $(j+1)^{\text {th }}$ through $m^{\text {th }}$. End result:

$$
\mathbf{U x}=\mathbf{c},
$$

where \mathbf{U} is upper triangular.

- Backward substitution solves $\mathbf{U x}=\mathbf{c}$.

Invertibility (or not) of \mathbf{A} is established during forward elimination.

6 and 7. Forward phase of Gaussian elimination:

m	x_{1}	x_{2}	x_{3}	b
	$\boxed{4}$	5	2	12
-1	4	7	-2	4
c	3	3	2	9
	4	5	2	12
	0	$\boxed{2}$	-4	-8
$3 / 8$	0	$-3 / 4$	$1 / 2$	0

Determine the value of c and the solution $\left(x_{1}, x_{2}, x_{3}\right)$.

