The Matrix Product AB

The Matrix Product AB

Defined as the matrix of the cascade

The Matrix Product AB

Defined as the matrix of the cascade (series connection)

The Matrix Product AB

Defined as the matrix of the cascade (series connection) of two linear transformations

The Matrix Product AB

Defined as the matrix of the cascade (series connection) of two linear transformations (note order):

The Matrix Product AB

Defined as the matrix of the cascade (series connection) of two linear transformations (note order):

The Matrix Product AB

Defined as the matrix of the cascade (series connection) of two linear transformations (note order):

The Matrix Product AB

Defined as the matrix of the cascade (series connection) of two linear transformations (note order):

The Matrix Product AB

Defined as the matrix of the cascade (series connection) of two linear transformations (note order):

The Matrix Product AB

Defined as the matrix of the cascade (series connection) of two linear transformations (note order):

$(A B) x$

The Matrix Product AB

Defined as the matrix of the cascade (series connection) of two linear transformations (note order):

$(\mathbf{A B}) \mathbf{x}=A(B(\mathbf{x}))$

The Matrix Product AB

Defined as the matrix of the cascade (series connection) of two linear transformations (note order):

$$
(\mathbf{A B}) \mathbf{x}=A(B(\mathbf{x}))=\mathbf{A}(\mathbf{B} \mathbf{x})
$$

The Matrix Product AB

Defined as the matrix of the cascade (series connection) of two linear transformations (note order):

$$
(\mathbf{A B}) \mathbf{x}=A(B(\mathbf{x}))=\mathbf{A}(\mathbf{B} \mathbf{x})
$$

$$
(\mathbf{A B})_{i j}=
$$

The Matrix Product AB

Defined as the matrix of the cascade (series connection) of two linear transformations (note order):

$$
(\mathbf{A B}) \mathbf{x}=A(B(\mathbf{x}))=\mathbf{A}(\mathbf{B} \mathbf{x})
$$

$$
(\mathbf{A B})_{i j}=\left(i^{\text {th }} \text { row of } \mathbf{A}\right) \bullet
$$

The Matrix Product AB

Defined as the matrix of the cascade (series connection) of two linear transformations (note order):

$$
(\mathbf{A B}) \mathbf{x}=A(B(\mathbf{x}))=\mathbf{A}(\mathbf{B} \mathbf{x})
$$

$$
(\mathbf{A B})_{i j}=\left(i^{\text {th }} \text { row of } \mathbf{A}\right) \bullet\left(j^{\text {th }} \text { column of } \mathbf{B}\right)
$$

The Matrix Product AB

Defined as the matrix of the cascade (series connection) of two linear transformations (note order):

$$
(\mathbf{A B}) \mathbf{x}=A(B(\mathbf{x}))=\mathbf{A}(\mathbf{B} \mathbf{x})
$$

$$
(\mathbf{A B})_{i j}=\left(i^{\text {th }} \text { row of } \mathbf{A}\right) \bullet\left(j^{\text {th }} \text { column of } \mathbf{B}\right)=\sum_{k=1}^{p} a_{i k} b_{k j}
$$

The Matrix Product AB

Defined as the matrix of the cascade (series connection) of two linear transformations (note order):

$$
(\mathbf{A B}) \mathbf{x}=A(B(\mathbf{x}))=\mathbf{A}(\mathbf{B} \mathbf{x})
$$

$$
(\mathbf{A B})_{i j}=\left(i^{\text {th }} \text { row of } \mathbf{A}\right) \bullet\left(j^{\text {th }} \text { column of } \mathbf{B}\right)=\sum_{k=1}^{p} a_{i k} b_{k j}
$$

The Matrix Product AB

Defined as the matrix of the cascade (series connection) of two linear transformations (note order):

$$
(\mathbf{A B}) \mathbf{x}=A(B(\mathbf{x}))=\mathbf{A}(\mathbf{B} \mathbf{x})
$$

$$
(\mathbf{A B})_{i j}=\left(i^{\text {th }} \text { row of } \mathbf{A}\right) \bullet\left(j^{\text {th }} \text { column of } \mathbf{B}\right)=\sum_{k=1}^{p} a_{i k} b_{k j}
$$

$$
\mathbf{A}: m \times p,
$$

The Matrix Product AB

Defined as the matrix of the cascade (series connection) of two linear transformations (note order):

$$
(\mathbf{A B}) \mathbf{x}=A(B(\mathbf{x}))=\mathbf{A}(\mathbf{B} \mathbf{x})
$$

$$
(\mathbf{A B})_{i j}=\left(i^{\text {th }} \text { row of } \mathbf{A}\right) \bullet\left(j^{\text {th }} \text { column of } \mathbf{B}\right)=\sum_{k=1}^{p} a_{i k} b_{k j}
$$

$$
\mathbf{A}: m \times p, \mathbf{B}: p \times n
$$

The Matrix Product AB

Defined as the matrix of the cascade (series connection) of two linear transformations (note order):

$$
(\mathbf{A B}) \mathbf{x}=A(B(\mathbf{x}))=\mathbf{A}(\mathbf{B} \mathbf{x})
$$

$$
(\mathbf{A B})_{i j}=\left(i^{\text {th }} \text { row of } \mathbf{A}\right) \bullet\left(j^{\text {th }} \text { column of } \mathbf{B}\right)=\sum_{k=1}^{p} a_{i k} b_{k j}
$$

$$
\mathbf{A}: m \times p, \mathbf{B}: p \times n \Rightarrow \mathbf{A B}: m \times n
$$

The Matrix Product AB

Defined as the matrix of the cascade (series connection) of two linear transformations (note order):

$$
(\mathbf{A B}) \mathbf{x}=A(B(\mathbf{x}))=\mathbf{A}(\mathbf{B} \mathbf{x})
$$

$$
(\mathbf{A B})_{i j}=\left(i^{\text {th }} \text { row of } \mathbf{A}\right) \bullet\left(j^{\text {th }} \text { column of } \mathbf{B}\right)=\sum_{k=1}^{p} a_{i k} b_{k j}
$$

$$
\mathbf{A}: m \times p, \mathbf{B}: p \times n \Rightarrow \mathbf{A B}: m \times n
$$

1. If

$$
\mathbf{A}=\left[\begin{array}{rrr}
1 & -2 & 4 \\
2 & 0 & 3
\end{array}\right] \quad \text { and } \quad \mathbf{B}=\left[\begin{array}{rr}
5 & -1 \\
1 & 2 \\
-1 & 3
\end{array}\right]
$$

then $\mathbf{A B}=$

Associativity and Non-Commutativity

Associativity and Non-Commutativity

Matrix product is associative:

Associativity and Non-Commutativity

Matrix product is associative:

Associativity and Non-Commutativity

Matrix product is associative:

Associativity and Non-Commutativity

Matrix product is associative:

A(BC)

Associativity and Non-Commutativity

Matrix product is associative:

A(BC)

Associativity and Non-Commutativity

Matrix product is associative:

Associativity and Non-Commutativity

Matrix product is associative:

Associativity and Non-Commutativity

Matrix product is associative:

Associativity and Non-Commutativity

Matrix product is associative:

Matrix product is not commutative:

Associativity and Non-Commutativity

Matrix product is associative:

Matrix product is not commutative:

$$
\mathbf{A B} \neq \mathbf{B A}
$$

Associativity and Non-Commutativity

Matrix product is associative:

Matrix product is not commutative:

$$
\mathbf{A B} \neq \mathbf{B A} \quad \text { (in general) }
$$

2. In which (one or more) of the following instances does

$$
\mathbf{A B}=\mathbf{B A}
$$

hold?
(i) A and B are square matrices of the same size.
(ii) A and B are diagonal matrices of the same size.
(iii) A is a 2×2 matrix representing a counterclockwise rotation by $\pi / 6$ on the Cartesian plane; while \mathbf{B} is a 2×2 matrix representing projection onto the horizontal axis (of the same plane).
(iv) \mathbf{A} is a square matrix and \boldsymbol{B} is the identity matrix (of the same size).
2. In which (one or more) of the following instances does

$$
\mathbf{A B}=\mathbf{B A}
$$

hold?
(i) \mathbf{A} and \mathbf{B} are square matrices of the same size.
(ii) \mathbf{A} and \mathbf{B} are diagonal matrices of the same size.
(iii) $\quad \mathbf{A}$ is a 2×2 matrix representing a counterclockwise rotation by $\pi / 6$ on the Cartesian plane; while \mathbf{B} is a 2×2 matrix representing projection onto the horizontal axis (of the same plane).
(iv) \mathbf{A} is a square matrix and \mathbf{B} is the identity matrix (of the same size).
3. Let

$$
\mathbf{A}=\left[\begin{array}{rr}
\cos (\pi / 8) & -\sin (\pi / 8) \\
\sin (\pi / 8) & \cos (\pi / 8)
\end{array}\right] \quad \text { and } \quad \mathbf{B}=\left[\begin{array}{rr}
\cos (3 \pi / 7) & \sin (3 \pi / 7) \\
-\sin (3 \pi / 7) & \cos (3 \pi / 7)
\end{array}\right]
$$

Which (only one) of the following exponent pairs (m, n) is such that

$$
\mathbf{A}^{m} \mathbf{B}^{n}=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right] ?
$$

(i) $(8,7)$
(ii) $(8,14)$
(iii) $(4,7)$
3. Let

$$
\mathbf{A}=\left[\begin{array}{rr}
\cos (\pi / 8) & -\sin (\pi / 8) \\
\sin (\pi / 8) & \cos (\pi / 8)
\end{array}\right] \quad \text { and } \quad \mathbf{B}=\left[\begin{array}{rr}
\cos (3 \pi / 7) & \sin (3 \pi / 7) \\
-\sin (3 \pi / 7) & \cos (3 \pi / 7)
\end{array}\right]
$$

Which (only one) of the following exponent pairs (m, n) is such that

$$
\mathbf{A}^{m} \mathbf{B}^{n}=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right] ?
$$

(i) $(8,7)$
(ii) $(8,14)$
(iii) $(4,7)$
(iv) $(4,14)$
4. Let \mathbf{a} and \mathbf{b} be n-dimensional column vectors (where $n>1$) having real-valued entries. If

$$
\mathbf{C}=\mathbf{a}^{T} \mathbf{b} \mathbf{b}^{T} \mathbf{a},
$$

which (one ore more) of the following statements are true about \mathbf{C} ?
(i) C is a $n \times n$ matrix.
(ii) C is scalar (i.e., 1×1).
(iii)
(iv) The entries of C may be positive, zero or negative, depending on the choice of \mathbf{a} and \mathbf{b}.
4. Let \mathbf{a} and \mathbf{b} be n-dimensional column vectors (where $n>1$) having real-valued entries. If

$$
\mathbf{C}=\mathbf{a}^{T} \mathbf{b} \mathbf{b}^{T} \mathbf{a},
$$

which (one ore more) of the following statements are true about \mathbf{C} ?
(i) \mathbf{C} is a $n \times n$ matrix.
(ii) \mathbf{C} is scalar (i.e., 1×1).
(iii) $\mathbf{C}=\mathbf{C}^{T}$
(iv) The entries of \mathbf{C} may be positive, zero or negative, depending on the choice of \mathbf{a} and \mathbf{b}.

Column and Row Operations

Column and Row Operations

If \mathbf{A} is $m \times n$ and \mathbf{c} is $n \times 1$, then

Column and Row Operations

If \mathbf{A} is $m \times n$ and \mathbf{c} is $n \times 1$, then

- $\mathbf{A c}=$

Column and Row Operations

If \mathbf{A} is $m \times n$ and \mathbf{c} is $n \times 1$, then

- $\mathbf{A c}=$ linear combination of columns of \mathbf{A} with coefficients in \mathbf{c}

Column and Row Operations

If \mathbf{A} is $m \times n$ and \mathbf{c} is $n \times 1$, then

- $\mathbf{A c}=$ linear combination of columns of \mathbf{A} with coefficients in \mathbf{c}
- $\mathbf{A}[\mathbf{c} \mid \mathbf{d}]=$

Column and Row Operations

If \mathbf{A} is $m \times n$ and \mathbf{c} is $n \times 1$, then

- $\mathbf{A c}=$ linear combination of columns of \mathbf{A} with coefficients in \mathbf{c}
- $\mathbf{A}[\mathbf{c} \mid \mathbf{d}]=[\mathbf{A c} \mid \mathbf{A d}]$

Column and Row Operations

If \mathbf{A} is $m \times n$ and \mathbf{c} is $n \times 1$, then

- $\mathbf{A c}=$ linear combination of columns of \mathbf{A} with coefficients in \mathbf{c}
- $\mathbf{A}[\mathbf{c} \mid \mathbf{d}]=[\mathbf{A c} \mid \mathbf{A d}]=$ two such linear combinations (side by side)

Column and Row Operations

If \mathbf{A} is $m \times n$ and \mathbf{c} is $n \times 1$, then

- $\mathbf{A c}=$ linear combination of columns of \mathbf{A} with coefficients in \mathbf{c}
- $\mathbf{A}[\mathbf{c} \mid \mathbf{d}]=[\mathbf{A c} \mid \mathbf{A d}]=$ two such linear combinations (side by side)
- $\mathbf{A e}^{(j)}=$

Column and Row Operations

If \mathbf{A} is $m \times n$ and \mathbf{c} is $n \times 1$, then

- $\mathbf{A c}=$ linear combination of columns of \mathbf{A} with coefficients in \mathbf{c}
- $\mathbf{A}[\mathbf{c} \mid \mathbf{d}]=[\mathbf{A c} \mid \mathbf{A d}]=$ two such linear combinations (side by side)
- $\mathbf{A} \mathbf{e}^{(j)}=j^{\text {th }}$ column of \mathbf{A}

Column and Row Operations

If \mathbf{A} is $m \times n$ and \mathbf{c} is $n \times 1$, then

- $\mathbf{A c}=$ linear combination of columns of \mathbf{A} with coefficients in \mathbf{c}
- $\mathbf{A}[\mathbf{c} \mid \mathbf{d}]=[\mathbf{A c} \mid \mathbf{A d}]=$ two such linear combinations (side by side)
- $\mathbf{A e}^{(j)}=j^{\text {th }}$ column of \mathbf{A}

If \mathbf{c} is $m \times 1$, then

Column and Row Operations

If \mathbf{A} is $m \times n$ and \mathbf{c} is $n \times 1$, then

- $\mathbf{A c}=$ linear combination of columns of \mathbf{A} with coefficients in \mathbf{c}
- $\mathbf{A}[\mathbf{c} \mid \mathbf{d}]=[\mathbf{A c} \mid \mathbf{A d}]=$ two such linear combinations (side by side)
- $\mathbf{A e}^{(j)}=j^{\text {th }}$ column of \mathbf{A}

If \mathbf{c} is $m \times 1$, then

- $\mathbf{c}^{T} \mathbf{A}=$

Column and Row Operations

If \mathbf{A} is $m \times n$ and \mathbf{c} is $n \times 1$, then

- $\mathbf{A c}=$ linear combination of columns of \mathbf{A} with coefficients in \mathbf{c}
- $\mathbf{A}[\mathbf{c} \mid \mathbf{d}]=[\mathbf{A c} \mid \mathbf{A d}]=$ two such linear combinations (side by side)
- $\mathbf{A e}^{(j)}=j^{\text {th }}$ column of \mathbf{A}

If \mathbf{c} is $m \times 1$, then

- $\mathbf{c}^{T} \mathbf{A}=$ linear combination of rows of \mathbf{A}

Column and Row Operations

If \mathbf{A} is $m \times n$ and \mathbf{c} is $n \times 1$, then

- $\mathbf{A c}=$ linear combination of columns of \mathbf{A} with coefficients in \mathbf{c}
- $\mathbf{A}[\mathbf{c} \mid \mathbf{d}]=[\mathbf{A c} \mid \mathbf{A d}]=$ two such linear combinations (side by side)
- $\mathbf{A e}^{(j)}=j^{\text {th }}$ column of \mathbf{A}

If \mathbf{c} is $m \times 1$, then

- $\mathbf{c}^{T} \mathbf{A}=$ linear combination of rows of \mathbf{A}
- $\left[\mathbf{c}^{T} ; \mathbf{d}^{T}\right] \mathbf{A}=$

Column and Row Operations

If \mathbf{A} is $m \times n$ and \mathbf{c} is $n \times 1$, then

- $\mathbf{A c}=$ linear combination of columns of \mathbf{A} with coefficients in \mathbf{c}
- $\mathbf{A}[\mathbf{c} \mid \mathbf{d}]=[\mathbf{A c} \mid \mathbf{A d}]=$ two such linear combinations (side by side)
- $\mathbf{A e}^{(j)}=j^{\text {th }}$ column of \mathbf{A}

If \mathbf{c} is $m \times 1$, then

- $\mathbf{c}^{T} \mathbf{A}=$ linear combination of rows of \mathbf{A}
- $\left[\mathbf{c}^{T} ; \mathbf{d}^{T}\right] \mathbf{A}=\left[\mathbf{c}^{T} \mathbf{A} ; \mathbf{d}^{T} \mathbf{A}\right]$

Column and Row Operations

If \mathbf{A} is $m \times n$ and \mathbf{c} is $n \times 1$, then

- $\mathbf{A c}=$ linear combination of columns of \mathbf{A} with coefficients in \mathbf{c}
- $\mathbf{A}[\mathbf{c} \mid \mathbf{d}]=[\mathbf{A c} \mid \mathbf{A d}]=$ two such linear combinations (side by side)
- $\mathbf{A e}^{(j)}=j^{\text {th }}$ column of \mathbf{A}

If \mathbf{c} is $m \times 1$, then

- $\mathbf{c}^{T} \mathbf{A}=$ linear combination of rows of \mathbf{A}
- $\left[\mathbf{c}^{T} ; \mathbf{d}^{T}\right] \mathbf{A}=\left[\mathbf{c}^{T} \mathbf{A} ; \mathbf{d}^{T} \mathbf{A}\right]=$ two such linear combinations (stacked)

Column and Row Operations

If \mathbf{A} is $m \times n$ and \mathbf{c} is $n \times 1$, then

- $\mathbf{A c}=$ linear combination of columns of \mathbf{A} with coefficients in \mathbf{c}
- $\mathbf{A}[\mathbf{c} \mid \mathbf{d}]=[\mathbf{A c} \mid \mathbf{A d}]=$ two such linear combinations (side by side)
- $\mathbf{A e}^{(j)}=j^{\text {th }}$ column of \mathbf{A}

If \mathbf{c} is $m \times 1$, then

- $\mathbf{c}^{T} \mathbf{A}=$ linear combination of rows of \mathbf{A}
- $\left[\mathbf{c}^{T} ; \mathbf{d}^{T}\right] \mathbf{A}=\left[\mathbf{c}^{T} \mathbf{A} ; \mathbf{d}^{T} \mathbf{A}\right]=$ two such linear combinations (stacked)
- $\left(\mathbf{e}^{(i)}\right)^{T} \mathbf{A}=$

Column and Row Operations

If \mathbf{A} is $m \times n$ and \mathbf{c} is $n \times 1$, then

- $\mathbf{A c}=$ linear combination of columns of \mathbf{A} with coefficients in \mathbf{c}
- $\mathbf{A}[\mathbf{c} \mid \mathbf{d}]=[\mathbf{A c} \mid \mathbf{A d}]=$ two such linear combinations (side by side)
- $\mathbf{A e}^{(j)}=j^{\text {th }}$ column of \mathbf{A}

If \mathbf{c} is $m \times 1$, then

- $\mathbf{c}^{T} \mathbf{A}=$ linear combination of rows of \mathbf{A}
- $\left[\mathbf{c}^{T} ; \mathbf{d}^{T}\right] \mathbf{A}=\left[\mathbf{c}^{T} \mathbf{A} ; \mathbf{d}^{T} \mathbf{A}\right]=$ two such linear combinations (stacked)
- $\left(\mathbf{e}^{(i)}\right)^{T} \mathbf{A}=i^{\text {th }}$ row of \mathbf{A}

Column and Row Permutations

Column and Row Permutations

Definition. \mathbf{P} is a $n \times n$ permutation matrix

Column and Row Permutations

Definition. \mathbf{P} is a $n \times n$ permutation matrix if each of its columns is a distinct standard unit vector $\mathbf{e}^{(j)}$ of length n.

Column and Row Permutations

Definition. \mathbf{P} is a $n \times n$ permutation matrix if each of its columns is a distinct standard unit vector $\mathbf{e}^{(j)}$ of length n.

Example $(n=3)$:

Column and Row Permutations

Definition. \mathbf{P} is a $n \times n$ permutation matrix if each of its columns is a distinct standard unit vector $\mathbf{e}^{(j)}$ of length n.

Example $(n=3)$:

$$
\mathbf{P}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

Column and Row Permutations

Definition. \mathbf{P} is a $n \times n$ permutation matrix if each of its columns is a distinct standard unit vector $\mathbf{e}^{(j)}$ of length n.

Example $(n=3)$:

$$
\mathbf{P}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

- If \mathbf{A} is $m \times n$, then $\mathbf{A P}$

Column and Row Permutations

Definition. \mathbf{P} is a $n \times n$ permutation matrix if each of its columns is a distinct standard unit vector $\mathbf{e}^{(j)}$ of length n.
Example $(n=3)$:

$$
\mathbf{P}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

- If \mathbf{A} is $m \times n$, then $\mathbf{A P}$ is a permutation of the columns of \mathbf{A}.

Column and Row Permutations

Definition. \mathbf{P} is a $n \times n$ permutation matrix if each of its columns is a distinct standard unit vector $\mathbf{e}^{(j)}$ of length n.

Example $(n=3)$:

$$
\mathbf{P}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

- If \mathbf{A} is $m \times n$, then $\mathbf{A P}$ is a permutation of the columns of \mathbf{A}.
- If \mathbf{A} is $n \times m$, then $\mathbf{P A}$

Column and Row Permutations

Definition. \mathbf{P} is a $n \times n$ permutation matrix if each of its columns is a distinct standard unit vector $\mathbf{e}^{(j)}$ of length n.

Example $(n=3)$:

$$
\mathbf{P}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

- If \mathbf{A} is $m \times n$, then $\mathbf{A P}$ is a permutation of the columns of \mathbf{A}.
- If \mathbf{A} is $n \times m$, then $\mathbf{P A}$ is a permutation of the rows of \mathbf{A}.

Column and Row Permutations

Definition. \mathbf{P} is a $n \times n$ permutation matrix if each of its columns is a distinct standard unit vector $\mathbf{e}^{(j)}$ of length n.

Example $(n=3)$:

$$
\mathbf{P}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

- If \mathbf{A} is $m \times n$, then $\mathbf{A P}$ is a permutation of the columns of \mathbf{A}.
- If \mathbf{A} is $n \times m$, then $\mathbf{P A}$ is a permutation of the rows of \mathbf{A}.

For all permutation matrices \mathbf{P},

Column and Row Permutations

Definition. \mathbf{P} is a $n \times n$ permutation matrix if each of its columns is a distinct standard unit vector $\mathbf{e}^{(j)}$ of length n.

Example $(n=3)$:

$$
\mathbf{P}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

- If \mathbf{A} is $m \times n$, then $\mathbf{A P}$ is a permutation of the columns of \mathbf{A}.
- If \mathbf{A} is $n \times m$, then $\mathbf{P A}$ is a permutation of the rows of \mathbf{A}.

For all permutation matrices \mathbf{P},

$$
\mathbf{P}^{T} \mathbf{P}=\mathbf{P P}^{T}=\mathbf{I}
$$

Column and Row Permutations

Definition. \mathbf{P} is a $n \times n$ permutation matrix if each of its columns is a distinct standard unit vector $\mathbf{e}^{(j)}$ of length n.

Example $(n=3)$:

$$
\mathbf{P}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

- If \mathbf{A} is $m \times n$, then $\mathbf{A P}$ is a permutation of the columns of \mathbf{A}.
- If \mathbf{A} is $n \times m$, then $\mathbf{P A}$ is a permutation of the rows of \mathbf{A}.

For all permutation matrices \mathbf{P},

$$
\mathbf{P}^{T} \mathbf{P}=\mathbf{P P}^{T}=\mathbf{I}
$$

$\mathbf{I}=(n \times n)$ identity matrix
5. Let

$$
\mathbf{A}=\left[\begin{array}{ccc}
a & b & c \\
d & e & f \\
p & q & r \\
s & t & u
\end{array}\right] \quad \text { and } \quad \mathbf{B}=\left[\begin{array}{ccc}
s & t & u \\
s & t & u \\
p & q & r \\
d & e & f
\end{array}\right]
$$

Then $\mathbf{B}=\mathbf{P A}$, where $\mathbf{P}=$
6. Let

$$
\mathbf{A}=\left[\begin{array}{ccc}
a & b & c \\
d & e & f
\end{array}\right], \quad \mathbf{P}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right] \quad \text { and } \quad \mathbf{B}=\mathbf{A P}
$$

Then $\mathbf{A}=\mathbf{B Q}$, where $\mathbf{Q}=$

