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2. In which (one or more) of the following instances does

AB = BA
hold?

(i) A and B are square matrices of the same size.
(i) A and B are diagonal matrices of the same size.

(i) A'is a 2 x 2 matrix representing a counterclockwise rotation by 7 /6 on the
Cartesian plane; while B is a 2 x 2 matrix representing projection onto the
horizontal axis (of the same plane).

(iv) A is a square matrix and B is the identity matrix (of the same size).



| cos(m/8) —sin(m/8) , _ cos(3m/7) sin(3w/7)
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3. Let

A = cos(m/8) —sin(mw/8) }

cos(3m/7) sin(3w/7)
sin(7/8)  cos(7/8)

and B = [—Sin(37r/7) cos(37/7)

Which (only one) of the following exponent pairs (m,n) is such that
AR — [ 0 —1 ] ,

1 0

(i) (8,7 (i) (8, 14) (i) (4, 7) (iv) (4, 14)
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4. Let a and b be n-dimensional column vectors (where n > 1) having real-valued
entries. If
C = a’bb’a,

which (one ore more) of the following statements are true about C?

(i)  Cis an xn matrix.

(ii)

(i) c=cCT
)

(iv

C is scalar (i.e.,, 1 x 1).

The entries of C may be positive, zero or negative, depending on the choice
of a and b.
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Column and Row Operations

If Ais mxn and cis n x 1, then
e Ac = linear combination of columns of A with coefficients in ¢
e Alc d] = [Ac Ad] = two such linear combinations (side by side)

o Ael) = j* column of A

If cis m x 1, then
e c’A = linear combination of rows of A
e [cT;dT]A = [c"A ;dTA] = two such linear combinations (stacked)

o (e)TA= i row of A
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Column and Row Permutations

Definition. P is a n x n permutation matrix if each of its columns is a distinct
standard unit vector el) of length n.

Example (n = 3):
0 01
P = 1 00
010
e If Aism xn, then AP is a permutation of the columns of A.

e If Aisn xm, then PA is a permutation of the rows of A.
For all permutation matrices P,
P’P=PPT =1

I = (n xn) identity matrix
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6. Let

a b ¢
A:{def]’ P

Then A = BQ, where Q =
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